Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1989 Apr 1;108(4):1517–1522. doi: 10.1083/jcb.108.4.1517

Visualization of cyclic nucleotide binding sites in the vertebrate retina by fluorescence microscopy

PMCID: PMC2115528  PMID: 2538481

Abstract

Cyclic nucleotides play a major role in cell signaling, especially in the nervous system. They act as cytoplasmic messengers in a wide range of physiological responses, but the spatial distribution of their sites of action within cells and tissues is not well-known. In the vertebrate retina, there is a class of well-characterized cGMP binding sites which control the permeability of cation channels in the rod outer segments (ROS), while cAMP is involved in several other systems in the inner retina. Biochemical studies of the cGMP-activated permeability in ROS have not distinguished between the subcellular compartments of disk and plasma membrane. By a new method using fluorescein-conjugated cyclic nucleotides, we have found strong cyclic GMP binding to the plasma membrane of the ROS, both on frozen sections of retina and in freshly isolated, leaky ROS. We also found a high density of cGMP binding sites on structures resembling the inner segment calycal processes. Little specific binding could be detected on the disk membranes or on any other retinal layer. In contrast, fluorescent cAMP did not label ROS, but gave a striking pattern of labeling on several deeper layers of the retina. These results suggest that the ROS plasma membrane has a much higher density of cGMP-controlled cation channels than the disk membranes, and point to other retinal layers where cAMP is likely to shape cellular responses. This method opens up novel morphological approaches to the study of cyclic nucleotide regulation.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Burnside B., Ackland N. Calcium-independent contraction in lysed cell models of teleost retinal cones: activation by unregulated myosin light chain kinase or high magnesium and loss of cAMP inhibition. J Cell Biol. 1987 Jul;105(1):397–402. doi: 10.1083/jcb.105.1.397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Burnside B. Thin (actin) and thick (myosinlike) filaments in cone contraction in the teleost retina. J Cell Biol. 1978 Jul;78(1):227–246. doi: 10.1083/jcb.78.1.227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Caretta A., Cavaggioni A., Grimaldi R., Sorbi R. T. Regulation of cyclic GMP binding to retinal rod membranes by calcium. Eur J Biochem. 1988 Oct 15;177(1):139–146. doi: 10.1111/j.1432-1033.1988.tb14354.x. [DOI] [PubMed] [Google Scholar]
  4. Caretta A., Cavaggioni A., Sorbi R. T. Binding stoichiometry of a fluorescent cGMP analogue to membranes of retinal rod outer segments. Eur J Biochem. 1985 Nov 15;153(1):49–53. doi: 10.1111/j.1432-1033.1985.tb09265.x. [DOI] [PubMed] [Google Scholar]
  5. Caretta A., Cavaggioni A., Sorbi R. T. Cyclic GMP and the permeability of the disks of the frog photoreceptors. J Physiol. 1979 Oct;295:171–178. doi: 10.1113/jphysiol.1979.sp012959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chaitin M. H., Schneider B. G., Hall M. O., Papermaster D. S. Actin in the photoreceptor connecting cilium: immunocytochemical localization to the site of outer segment disk formation. J Cell Biol. 1984 Jul;99(1 Pt 1):239–247. doi: 10.1083/jcb.99.1.239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cobbs W. H., Pugh E. N., Jr Cyclic GMP can increase rod outer-segment light-sensitive current 10-fold without delay of excitation. Nature. 1985 Feb 14;313(6003):585–587. doi: 10.1038/313585a0. [DOI] [PubMed] [Google Scholar]
  8. Cook N. J., Hanke W., Kaupp U. B. Identification, purification, and functional reconstitution of the cyclic GMP-dependent channel from rod photoreceptors. Proc Natl Acad Sci U S A. 1987 Jan;84(2):585–589. doi: 10.1073/pnas.84.2.585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Del Priore L. V., Lewis A., Tan S., Carley W. W., Webb W. W. Fluorescence light microscopy of F-actin in retinal rods and glial cells. Invest Ophthalmol Vis Sci. 1987 Apr;28(4):633–639. [PubMed] [Google Scholar]
  10. Fesenko E. E., Kolesnikov S. S., Lyubarsky A. L. Induction by cyclic GMP of cationic conductance in plasma membrane of retinal rod outer segment. Nature. 1985 Jan 24;313(6000):310–313. doi: 10.1038/313310a0. [DOI] [PubMed] [Google Scholar]
  11. Kamps K. M., De Grip W. J., Daemen F. J. Use of a density modification technique for isolation of the plasma membrane of rod outer segments. Biochim Biophys Acta. 1982 May 7;687(2):296–302. doi: 10.1016/0005-2736(82)90558-2. [DOI] [PubMed] [Google Scholar]
  12. Koch K. W., Kaupp U. B. Cyclic GMP directly regulates a cation conductance in membranes of bovine rods by a cooperative mechanism. J Biol Chem. 1985 Jun 10;260(11):6788–6800. [PubMed] [Google Scholar]
  13. Lerea C. L., Somers D. E., Hurley J. B., Klock I. B., Bunt-Milam A. H. Identification of specific transducin alpha subunits in retinal rod and cone photoreceptors. Science. 1986 Oct 3;234(4772):77–80. doi: 10.1126/science.3529395. [DOI] [PubMed] [Google Scholar]
  14. Mangini N. J., Pepperberg D. R. Immunolocalization of 48K in rod photoreceptors. Light and ATP increase OS labeling. Invest Ophthalmol Vis Sci. 1988 Aug;29(8):1221–1234. [PubMed] [Google Scholar]
  15. Matesic D., Liebman P. A. cGMP-dependent cation channel of retinal rod outer segments. Nature. 1987 Apr 9;326(6113):600–603. doi: 10.1038/326600a0. [DOI] [PubMed] [Google Scholar]
  16. Miller J. P., Boswell K. H., Muneyama K., Simon L. N., Robins R. K., Shuman D. A. Synthesis and biochemical studies of various 8-substituted derivatives of guanosine 3',5'-cyclic phosphate, inosine 3',5'-cyclic phosphate, and xanthosine 3',5'-cyclic phosphate. Biochemistry. 1973 Dec 18;12(26):5310–5319. doi: 10.1021/bi00750a014. [DOI] [PubMed] [Google Scholar]
  17. Molday R. S., Molday L. L. Differences in the protein composition of bovine retinal rod outer segment disk and plasma membranes isolated by a ricin-gold-dextran density perturbation method. J Cell Biol. 1987 Dec;105(6 Pt 1):2589–2601. doi: 10.1083/jcb.105.6.2589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Muneyama K., Bauer R. J., Shuman D. A., Robins R. K., Simon L. N. Chemical synthesis and biological activity of 8-substituted adenosine 3',5'-cyclic monophosphate derivatives. Biochemistry. 1971 Jun 8;10(12):2390–2395. doi: 10.1021/bi00788a033. [DOI] [PubMed] [Google Scholar]
  19. Nakatani K., Yau K. W. Guanosine 3',5'-cyclic monophosphate-activated conductance studied in a truncated rod outer segment of the toad. J Physiol. 1988 Jan;395:731–753. doi: 10.1113/jphysiol.1988.sp016943. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Piccolino M., Neyton J., Gerschenfeld H. M. Decrease of gap junction permeability induced by dopamine and cyclic adenosine 3':5'-monophosphate in horizontal cells of turtle retina. J Neurosci. 1984 Oct;4(10):2477–2488. doi: 10.1523/JNEUROSCI.04-10-02477.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Spencer M., Detwiler P. B., Bunt-Milam A. H. Distribution of membrane proteins in mechanically dissociated retinal rods. Invest Ophthalmol Vis Sci. 1988 Jul;29(7):1012–1020. [PubMed] [Google Scholar]
  22. Steinberg R. H., Fisher S. K., Anderson D. H. Disc morphogenesis in vertebrate photoreceptors. J Comp Neurol. 1980 Apr 1;190(3):501–508. doi: 10.1002/cne.901900307. [DOI] [PubMed] [Google Scholar]
  23. Witt P. L., Hamm H. E., Bownds M. D. Preparation and characterization of monoclonal antibodies to several frog rod outer segment proteins. J Gen Physiol. 1984 Aug;84(2):251–263. doi: 10.1085/jgp.84.2.251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Yau K. W., Nakatani K. Light-suppressible, cyclic GMP-sensitive conductance in the plasma membrane of a truncated rod outer segment. Nature. 1985 Sep 19;317(6034):252–255. doi: 10.1038/317252a0. [DOI] [PubMed] [Google Scholar]
  25. Yoshikami S., Robinson W. E., Hagins W. A. Topology of the outer segment membranes of retinal rods and cones revealed by a fluorescent probe. Science. 1974 Sep 27;185(4157):1176–1179. doi: 10.1126/science.185.4157.1176. [DOI] [PubMed] [Google Scholar]
  26. Zimmerman A. L., Baylor D. A. Cyclic GMP-sensitive conductance of retinal rods consists of aqueous pores. Nature. 1986 May 1;321(6065):70–72. doi: 10.1038/321070a0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES