Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1989 May 1;108(5):1899–1907. doi: 10.1083/jcb.108.5.1899

Immunoelectron microscopic localization of hyaluronic acid-binding region and link protein epitopes in brain

PMCID: PMC2115534  PMID: 2469681

Abstract

The 1C6 monoclonal antibody to the hyaluronic acid-binding region weakly stained a 65-kD component in immunoblots of the chondroitin sulfate proteoglycans of brain, and the 8A4 monoclonal antibody, which recognizes two epitopes in the polypeptide portion of link protein, produced strong staining of a 45-kD component present in the brain proteoglycans. These antibodies were utilized to examine the localization of hyaluronic acid-binding region and link protein epitopes in rat cerebellum. Like the chondroitin sulfate proteoglycans themselves and hyaluronic acid, hyaluronic acid-binding region and link protein immunoreactivity changed from a predominantly extracellular to an intracellular (cytoplasmic and intra-axonal) location during the first postnatal month of brain development. The cell types which showed staining of hyaluronic acid-binding region and link protein, such as granule cells and their axons (the parallel fibers), astrocytes, and certain myelinated fibers, were generally the same as those previously found to contain chondroitin sulfate proteoglycans and hyaluronic acid. Prominent staining of some cell nuclei was also observed. In agreement with earlier conclusions concerning the localization of hyaluronic acid and chondroitin sulfate proteoglycans, there was no intracellular staining of Purkinje cells or nerve endings or staining of certain other structures, such as oligodendroglia and synaptic vesicles. The similar localizations and coordinate developmental changes of chondroitin sulfate proteoglycans, hyaluronic acid, hyaluronic acid- binding region, and link protein add further support to previous evidence for the unusual cytoplasmic localization of these proteoglycans in mature brain. Our results also suggest that much of the chondroitin sulfate proteoglycan of brain may exist in the form of aggregates with hyaluronic acid.

Full Text

The Full Text of this article is available as a PDF (5.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aquino D. A., Margolis R. U., Margolis R. K. Immunocytochemical localization of a chondroitin sulfate proteoglycan in nervous tissue. I. Adult brain, retina, and peripheral nerve. J Cell Biol. 1984 Sep;99(3):1117–1129. doi: 10.1083/jcb.99.3.1117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aquino D. A., Margolis R. U., Margolis R. K. Immunocytochemical localization of a chondroitin sulfate proteoglycan in nervous tissue. II. Studies in developing brain. J Cell Biol. 1984 Sep;99(3):1130–1139. doi: 10.1083/jcb.99.3.1130. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bhavanandan V. P., Davidson E. A. Mucopolysaccharides associated with nuclei of cultured mammalian cells. Proc Natl Acad Sci U S A. 1975 Jun;72(6):2032–2036. doi: 10.1073/pnas.72.6.2032. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Caterson B., Baker J. R., Christner J. E., Lee Y., Lentz M. Monoclonal antibodies as probes for determining the microheterogeneity of the link proteins of cartilage proteoglycan. J Biol Chem. 1985 Sep 15;260(20):11348–11356. [PubMed] [Google Scholar]
  5. Crawford T. Distribution in cesium chloride gradients of proteoglycans of chick embryo brain and characterization of a large aggregating proteoglycan. Biochim Biophys Acta. 1988 Feb 17;964(2):183–192. doi: 10.1016/0304-4165(88)90165-1. [DOI] [PubMed] [Google Scholar]
  6. Faltz L. L., Caputo C. B., Kimura J. H., Schrode J., Hascall V. C. Structure of the complex between hyaluronic acid, the hyaluronic acid-binding region, and the link protein of proteoglycan aggregates from the swarm rat chondrosarcoma. J Biol Chem. 1979 Feb 25;254(4):1381–1387. [PubMed] [Google Scholar]
  7. Fedarko N. S., Conrad H. E. A unique heparan sulfate in the nuclei of hepatocytes: structural changes with the growth state of the cells. J Cell Biol. 1986 Feb;102(2):587–599. doi: 10.1083/jcb.102.2.587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fromme H. G., Buddecke E., von Figura K., Kresse H. Localization of sulfated glycosaminoglycans within cell nuclei by high-resolution autoradiography. Exp Cell Res. 1976 Oct 15;102(2):445–449. doi: 10.1016/0014-4827(76)90068-9. [DOI] [PubMed] [Google Scholar]
  9. Furukawa K., Terayama H. Isolation and identification of glycosaminoglycans associated with purified nuclei from rat liver. Biochim Biophys Acta. 1977 Sep 29;499(2):278–289. doi: 10.1016/0304-4165(77)90010-1. [DOI] [PubMed] [Google Scholar]
  10. Furukawa K., Terayama H. Pattern of glycosaminoglycans and glycoproteins associated with nuclei of regenerating liver of rat. Biochim Biophys Acta. 1979 Jul 18;585(4):575–588. doi: 10.1016/0304-4165(79)90190-9. [DOI] [PubMed] [Google Scholar]
  11. Hassell J. R., Kimura J. H., Hascall V. C. Proteoglycan core protein families. Annu Rev Biochem. 1986;55:539–567. doi: 10.1146/annurev.bi.55.070186.002543. [DOI] [PubMed] [Google Scholar]
  12. Hoffman S., Crossin K. L., Edelman G. M. Molecular forms, binding functions, and developmental expression patterns of cytotactin and cytotactin-binding proteoglycan, an interactive pair of extracellular matrix molecules. J Cell Biol. 1988 Feb;106(2):519–532. doi: 10.1083/jcb.106.2.519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hoffman S., Edelman G. M. A proteoglycan with HNK-1 antigenic determinants is a neuron-associated ligand for cytotactin. Proc Natl Acad Sci U S A. 1987 Apr;84(8):2523–2527. doi: 10.1073/pnas.84.8.2523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ishihara M., Fedarko N. S., Conrad H. E. Transport of heparan sulfate into the nuclei of hepatocytes. J Biol Chem. 1986 Oct 15;261(29):13575–13580. [PubMed] [Google Scholar]
  15. Kiang W. L., Margolis R. U., Margolis R. K. Fractionation and properties of a chondroitin sulfate proteoglycan and the soluble glycoproteins of brain. J Biol Chem. 1981 Oct 25;256(20):10529–10537. [PubMed] [Google Scholar]
  16. Klinger M. M., Margolis R. U., Margolis R. K. Isolation and characterization of the heparan sulfate proteoglycans of brain. Use of affinity chromatography on lipoprotein lipase-agarose. J Biol Chem. 1985 Apr 10;260(7):4082–4090. [PubMed] [Google Scholar]
  17. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  18. Levine J. M., Card J. P. Light and electron microscopic localization of a cell surface antigen (NG2) in the rat cerebellum: association with smooth protoplasmic astrocytes. J Neurosci. 1987 Sep;7(9):2711–2720. doi: 10.1523/JNEUROSCI.07-09-02711.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Margolis R. K., Crockett C. P., Kiang W. L., Margolis R. U. Glycosaminoglycans and glycoproteins associated with rat brain nuclei. Biochim Biophys Acta. 1976 Dec 21;451(2):465–469. doi: 10.1016/0304-4165(76)90141-0. [DOI] [PubMed] [Google Scholar]
  20. Margolis R. K., Ripellino J. A., Goossen B., Steinbrich R., Margolis R. U. Occurrence of the HNK-1 epitope (3-sulfoglucuronic acid) in PC12 pheochromocytoma cells, chromaffin granule membranes, and chondroitin sulfate proteoglycans. Biochem Biophys Res Commun. 1987 Jun 30;145(3):1142–1148. doi: 10.1016/0006-291x(87)91556-7. [DOI] [PubMed] [Google Scholar]
  21. Margolis R. U., Margolis R. K., Chang L. B., Preti C. Glycosaminoglycans of brain during development. Biochemistry. 1975 Jan 14;14(1):85–88. doi: 10.1021/bi00672a014. [DOI] [PubMed] [Google Scholar]
  22. Norling B., Glimelius B., Wasteson A. A chondroitin sulphate proteoglycan from human cultured glial and glioma cells. Structural and functional properties. Biochem J. 1984 Aug 1;221(3):845–853. doi: 10.1042/bj2210845. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Oike Y., Kimata K., Shinomura T., Suzuki S. Proteinase activity in chondroitin lyase (chondroitinase) and endo-beta-D-galactosidase (keratanase) preparations and a method to abolish their proteolytic effect on proteoglycan. Biochem J. 1980 Oct 1;191(1):203–207. doi: 10.1042/bj1910203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Ripellino J. A., Bailo M., Margolis R. U., Margolis R. K. Light and electron microscopic studies on the localization of hyaluronic acid in developing rat cerebellum. J Cell Biol. 1988 Mar;106(3):845–855. doi: 10.1083/jcb.106.3.845. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Ripellino J. A., Klinger M. M., Margolis R. U., Margolis R. K. The hyaluronic acid binding region as a specific probe for the localization of hyaluronic acid in tissue sections. Application to chick embryo and rat brain. J Histochem Cytochem. 1985 Oct;33(10):1060–1066. doi: 10.1177/33.10.4045184. [DOI] [PubMed] [Google Scholar]
  26. Stein G. S., Roberts R. M., Davis J. L., Head W. J., Stein J. L., Thrall C. L., Van Veen J., Welch D. W. Are glycoproteins and glycosaminoglycans components of the eukaryotic genome? Nature. 1975 Dec 18;258(5536):639–641. doi: 10.1038/258639a0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES