Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1989 May 1;108(5):1967–1977. doi: 10.1083/jcb.108.5.1967

A family of abundant plasma membrane-associated glycoproteins related to the arabinogalactan proteins is unique to flowering plants

PMCID: PMC2115552  PMID: 2469683

Abstract

We have identified a family of abundant peripheral plasma membrane glycoproteins that is unique to flowering plants. They are identified by a monoclonal antibody, MAC 207, that recognizes an epitope containing L-arabinose and D-glucuronic acid. Immunofluorescence and immunogold labeling studies locate the MAC 207 epitope to the outer surface of the plasma membrane both in protoplasts and in intact tissues. In some cells MAC 207 also binds to the vacuolar membrane, probably reflecting the movement of the plasma membrane glycoproteins in the endocytic pathway. The epitope recognized by MAC 207 is also present on a distinct soluble proteoglycan secreted into the growth medium by carrot (Daucus carota) suspension culture cells. Biochemical evidence identifies this neutral proteoglycan as a member of the large class of arabinogalactan proteins (AGPs), and suggests a structural relationship between it and the plasma membrane glycoproteins. AGPs have the property of binding to beta-glycans, and we therefore propose that one function of the AGP-related, plasma membrane-associated glycoproteins may be to act as cell surface attachment sites for cell wall matrix polysaccharides.

Full Text

The Full Text of this article is available as a PDF (3.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ashford D., Desai N. N., Allen A. K., Neuberger A., O'Neill M. A., Selvendran R. R. Structural studies of the carbohydrate moieties of lectins from potato (Solanum tuberosum) tubers and thorn-apple (Datura stramonium) seeds. Biochem J. 1982 Jan 1;201(1):199–208. doi: 10.1042/bj2010199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Averyhart-Fullard V., Datta K., Marcus A. A hydroxyproline-rich protein in the soybean cell wall. Proc Natl Acad Sci U S A. 1988 Feb;85(4):1082–1085. doi: 10.1073/pnas.85.4.1082. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barker H. A. Biochemical functions of corrinoid compounds. The sixth Hopkins memorial lecture. Biochem J. 1967 Oct;105(1):1–15. doi: 10.1042/bj1050001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Barondes S. H. Bifunctional properties of lectins: lectins redefined. Trends Biochem Sci. 1988 Dec;13(12):480–482. doi: 10.1016/0968-0004(88)90235-6. [DOI] [PubMed] [Google Scholar]
  5. Bordier C. Phase separation of integral membrane proteins in Triton X-114 solution. J Biol Chem. 1981 Feb 25;256(4):1604–1607. [PubMed] [Google Scholar]
  6. Dupont F. M., Tanaka C. K., Hurkman W. J. separation and Immunological Characterization of Membrane Fractions from Barley Roots. Plant Physiol. 1988 Mar;86(3):717–724. doi: 10.1104/pp.86.3.717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gabius H. J., Springer W. R., Barondes S. H. Receptor for the cell binding site of discoidin I. Cell. 1985 Sep;42(2):449–456. doi: 10.1016/0092-8674(85)90102-3. [DOI] [PubMed] [Google Scholar]
  8. Green P. B. Plasticity in shoot development: a biophysical view. Symp Soc Exp Biol. 1986;40:211–232. [PubMed] [Google Scholar]
  9. Grimes H. D., Breidenbach R. W. Plant plasma membrane proteins : immunological characterization of a major 75 kilodalton protein group. Plant Physiol. 1987 Dec;85(4):1048–1054. doi: 10.1104/pp.85.4.1048. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hynes R. Molecular biology of fibronectin. Annu Rev Cell Biol. 1985;1:67–90. doi: 10.1146/annurev.cb.01.110185.000435. [DOI] [PubMed] [Google Scholar]
  11. Hök M., Kjellén L., Johansson S. Cell-surface glycosaminoglycans. Annu Rev Biochem. 1984;53:847–869. doi: 10.1146/annurev.bi.53.070184.004215. [DOI] [PubMed] [Google Scholar]
  12. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  13. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  14. Larkin P. J. Plant protoplast agglutination and membrane-bound beta-lectins. J Cell Sci. 1977 Aug;26:31–46. doi: 10.1242/jcs.26.1.31. [DOI] [PubMed] [Google Scholar]
  15. Larkin P. J. Plant protoplast agglutination by artificial carbohydrate antigens. J Cell Sci. 1978 Apr;30:283–292. doi: 10.1242/jcs.30.1.283. [DOI] [PubMed] [Google Scholar]
  16. McDonald J. A. Extracellular matrix assembly. Annu Rev Cell Biol. 1988;4:183–207. doi: 10.1146/annurev.cb.04.110188.001151. [DOI] [PubMed] [Google Scholar]
  17. Meyer D. J., Afonso C. L., Galbraith D. W. Isolation and characterization of monoclonal antibodies directed against plant plasma membrane and cell wall epitopes: identification of a monoclonal antibody that recognizes extensin and analysis of the process of epitope biosynthesis in plant tissues and cell cultures. J Cell Biol. 1988 Jul;107(1):163–175. doi: 10.1083/jcb.107.1.163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. O'Farrell P. H. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975 May 25;250(10):4007–4021. [PMC free article] [PubMed] [Google Scholar]
  19. Pope D. G. Relationships between Hydroxyproline-containing Proteins Secreted into the Cell Wall and Medium by Suspension-cultured Acer pseudoplatanus Cells. Plant Physiol. 1977 May;59(5):894–900. doi: 10.1104/pp.59.5.894. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Selvendran R. R., March J. F., Ring S. G. Determination of aldoses and uronic acid content of vegetable fiber. Anal Biochem. 1979 Jul 15;96(2):282–292. doi: 10.1016/0003-2697(79)90583-9. [DOI] [PubMed] [Google Scholar]
  21. Springer W. R., Cooper D. N., Barondes S. H. Discoidin I is implicated in cell-substratum attachment and ordered cell migration of Dictyostelium discoideum and resembles fibronectin. Cell. 1984 Dec;39(3 Pt 2):557–564. doi: 10.1016/0092-8674(84)90462-8. [DOI] [PubMed] [Google Scholar]
  22. Tsumuraya Y., Ogura K., Hashimoto Y., Mukoyama H., Yamamoto S. Arabinogalactan-Proteins from Primary and Mature Roots of Radish (Raphanus sativus L.). Plant Physiol. 1988 Jan;86(1):155–160. doi: 10.1104/pp.86.1.155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. YARIV J., RAPPORT M. M., GRAF L. The interaction of glycosides and saccharides with antibody to the corresponding phenylazo glycosides. Biochem J. 1962 Nov;85:383–388. doi: 10.1042/bj0850383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. van Holst G. J., Clarke A. E. Organ-Specific Arabinogalactan-Proteins of Lycopersicon peruvianum (Mill) Demonstrated by Crossed Electrophoresis. Plant Physiol. 1986 Mar;80(3):786–789. doi: 10.1104/pp.80.3.786. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES