Abstract
Morphogenesis of embryonic organs is regulated by epithelial- mesenchymal interactions associating with changes in the extracellular matrix (ECM). The response of the cells to the changes in the ECM must involve integral cell surface molecules that recognize their matrix ligand and initiate transmission of signal intracellularly. We have studied the expression of the cell surface proteoglycan, syndecan, which is a matrix receptor for epithelial cells (Saunders, S., M. Jalkanen, S. O'Farrell, and M. Bernfield. J. Cell Biol. In press.), and the matrix glycoprotein, tenascin, which has been proposed to be involved in epithelial-mesenchymal interactions (Chiquet-Ehrismann, R., E. J. Mackie, C. A. Pearson, and T. Sakakura. 1986. Cell. 47:131-139) in experimental tissue recombinations of dental epithelium and mesenchyme. Our earlier studies have shown that in mouse embryos both syndecan and tenascin are intensely expressed in the condensing dental mesenchyme surrounding the epithelial bud (Thesleff, I., M. Jalkanen, S. Vainio, and M. Bernfield. 1988. Dev. Biol. 129:565-572; Thesleff, I., E. Mackie, S. Vainio, and R. Chiquet-Ehrismann. 1987. Development. 101:289-296). Analysis of rat-mouse tissue recombinants by a monoclonal antibody against the murine syndecan showed that the presumptive dental epithelium induces the expression of syndecan in the underlying mesenchyme. The expression of tenascin was induced in the dental mesenchyme in the same area as syndecan. The syndecan and tenascin positive areas increased with time of epithelial-mesenchymal contact. Other ECM molecules, laminin, type III collagen, and fibronectin, did not show a staining pattern similar to that of syndecan and tenascin. Oral epithelium from older embryos had lost its ability to induce syndecan expression but the presumptive dental epithelium induced syndecan expression even in oral mesenchyme of older embryos. Our results indicate that the expression of syndecan and tenascin in the tooth mesenchyme is regulated by epithelial-mesenchymal interactions. Because of their early appearance, syndecan and tenascin may be used to study the molecular regulation of this interaction. The similar distribution patterns of syndecan and tenascin in vivo and in vitro and their early appearance as a result of epithelial-mesenchymal interaction suggest that these molecules may be involved in the condensation and differentiation of dental mesenchymal cells.
Full Text
The Full Text of this article is available as a PDF (3.0 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aufderheide E., Chiquet-Ehrismann R., Ekblom P. Epithelial-mesenchymal interactions in the developing kidney lead to expression of tenascin in the mesenchyme. J Cell Biol. 1987 Jul;105(1):599–608. doi: 10.1083/jcb.105.1.599. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Aufderheide E., Ekblom P. Tenascin during gut development: appearance in the mesenchyme, shift in molecular forms, and dependence on epithelial-mesenchymal interactions. J Cell Biol. 1988 Dec;107(6 Pt 1):2341–2349. doi: 10.1083/jcb.107.6.2341. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bernfield M., Banerjee S. D. The turnover of basal lamina glycosaminoglycan correlates with epithelial morphogenesis. Dev Biol. 1982 Apr;90(2):291–305. doi: 10.1016/0012-1606(82)90378-5. [DOI] [PubMed] [Google Scholar]
- Chiquet-Ehrismann R., Kalla P., Pearson C. A., Beck K., Chiquet M. Tenascin interferes with fibronectin action. Cell. 1988 May 6;53(3):383–390. doi: 10.1016/0092-8674(88)90158-4. [DOI] [PubMed] [Google Scholar]
- Chiquet-Ehrismann R., Mackie E. J., Pearson C. A., Sakakura T. Tenascin: an extracellular matrix protein involved in tissue interactions during fetal development and oncogenesis. Cell. 1986 Oct 10;47(1):131–139. doi: 10.1016/0092-8674(86)90374-0. [DOI] [PubMed] [Google Scholar]
- Dietrich C. P., Nader H. B., Straus A. H. Structural differences of heparan sulfates according to the tissue and species of origin. Biochem Biophys Res Commun. 1983 Mar 29;111(3):865–871. doi: 10.1016/0006-291x(83)91379-7. [DOI] [PubMed] [Google Scholar]
- Ekblom P., Vestweber D., Kemler R. Cell-matrix interactions and cell adhesion during development. Annu Rev Cell Biol. 1986;2:27–47. doi: 10.1146/annurev.cb.02.110186.000331. [DOI] [PubMed] [Google Scholar]
- Fransson L. A., Havsmark B. Structural requirements for heparan sulphate self-association. Carbohydr Res. 1982 Nov 16;110(1):135–144. doi: 10.1016/0008-6215(82)85032-5. [DOI] [PubMed] [Google Scholar]
- Grobstein C., Cohen J. Collagenase: effect on the morphogenesis of embryonic salivary epithelium in vitro. Science. 1965 Oct 29;150(3696):626–628. doi: 10.1126/science.150.3696.626. [DOI] [PubMed] [Google Scholar]
- Gurdon J. B. Embryonic induction--molecular prospects. Development. 1987 Mar;99(3):285–306. doi: 10.1242/dev.99.3.285. [DOI] [PubMed] [Google Scholar]
- Hayashi K., Hayashi M., Jalkanen M., Firestone J. H., Trelstad R. L., Bernfield M. Immunocytochemistry of cell surface heparan sulfate proteoglycan in mouse tissues. A light and electron microscopic study. J Histochem Cytochem. 1987 Oct;35(10):1079–1088. doi: 10.1177/35.10.2957423. [DOI] [PubMed] [Google Scholar]
- Heuberger B., Fitzka I., Wasner G., Kratochwil K. Induction of androgen receptor formation by epithelium-mesenchyme interaction in embryonic mouse mammary gland. Proc Natl Acad Sci U S A. 1982 May;79(9):2957–2961. doi: 10.1073/pnas.79.9.2957. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Inaguma Y., Kusakabe M., Mackie E. J., Pearson C. A., Chiquet-Ehrismann R., Sakakura T. Epithelial induction of stromal tenascin in the mouse mammary gland: from embryogenesis to carcinogenesis. Dev Biol. 1988 Aug;128(2):245–255. doi: 10.1016/0012-1606(88)90288-6. [DOI] [PubMed] [Google Scholar]
- Jalkanen M. Biology of cell surface heparan sulfate proteoglycans. Med Biol. 1987;65(1):41–47. [PubMed] [Google Scholar]
- Jalkanen M., Nguyen H., Rapraeger A., Kurn N., Bernfield M. Heparan sulfate proteoglycans from mouse mammary epithelial cells: localization on the cell surface with a monoclonal antibody. J Cell Biol. 1985 Sep;101(3):976–984. doi: 10.1083/jcb.101.3.976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jalkanen M., Rapraeger A., Saunders S., Bernfield M. Cell surface proteoglycan of mouse mammary epithelial cells is shed by cleavage of its matrix-binding ectodomain from its membrane-associated domain. J Cell Biol. 1987 Dec;105(6 Pt 2):3087–3096. doi: 10.1083/jcb.105.6.3087. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jalkanen S., Bargatze R. F., de los Toyos J., Butcher E. C. Lymphocyte recognition of high endothelium: antibodies to distinct epitopes of an 85-95-kD glycoprotein antigen differentially inhibit lymphocyte binding to lymph node, mucosal, or synovial endothelial cells. J Cell Biol. 1987 Aug;105(2):983–990. doi: 10.1083/jcb.105.2.983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Koda J. E., Rapraeger A., Bernfield M. Heparan sulfate proteoglycans from mouse mammary epithelial cells. Cell surface proteoglycan as a receptor for interstitial collagens. J Biol Chem. 1985 Jul 5;260(13):8157–8162. [PubMed] [Google Scholar]
- Koda J. E., Rapraeger A., Bernfield M. Heparan sulfate proteoglycans from mouse mammary epithelial cells. Cell surface proteoglycan as a receptor for interstitial collagens. J Biol Chem. 1985 Jul 5;260(13):8157–8162. [PubMed] [Google Scholar]
- Kollar E. J., Baird G. R. Tissue interactions in embryonic mouse tooth germs. II. The inductive role of the dental papilla. J Embryol Exp Morphol. 1970 Aug;24(1):173–186. [PubMed] [Google Scholar]
- Lash J. W., Vasan N. S. Somite chondrogenesis in vitro. Stimulation by exogenous extracellular matrix components. Dev Biol. 1978 Sep;66(1):151–171. doi: 10.1016/0012-1606(78)90281-6. [DOI] [PubMed] [Google Scholar]
- Lumsden A. G. Spatial organization of the epithelium and the role of neural crest cells in the initiation of the mammalian tooth germ. Development. 1988;103 (Suppl):155–169. doi: 10.1242/dev.103.Supplement.155. [DOI] [PubMed] [Google Scholar]
- Mackie E. J., Thesleff I., Chiquet-Ehrismann R. Tenascin is associated with chondrogenic and osteogenic differentiation in vivo and promotes chondrogenesis in vitro. J Cell Biol. 1987 Dec;105(6 Pt 1):2569–2579. doi: 10.1083/jcb.105.6.2569. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mercola M., Stiles C. D. Growth factor superfamilies and mammalian embryogenesis. Development. 1988 Mar;102(3):451–460. doi: 10.1242/dev.102.3.451. [DOI] [PubMed] [Google Scholar]
- Mina M., Kollar E. J. The induction of odontogenesis in non-dental mesenchyme combined with early murine mandibular arch epithelium. Arch Oral Biol. 1987;32(2):123–127. doi: 10.1016/0003-9969(87)90055-0. [DOI] [PubMed] [Google Scholar]
- Mugnai G., Lewandowska K., Choi H. U., Rosenberg L. C., Culp L. A. Ganglioside-dependent adhesion events of human neuroblastoma cells regulated by the RGDS-dependent fibronectin receptor and proteoglycans. Exp Cell Res. 1988 Apr;175(2):229–247. doi: 10.1016/0014-4827(88)90189-9. [DOI] [PubMed] [Google Scholar]
- Partanen A. M., Thesleff I. Localization and quantitation of 125I-epidermal growth factor binding in mouse embryonic tooth and other embryonic tissues at different developmental stages. Dev Biol. 1987 Mar;120(1):186–197. doi: 10.1016/0012-1606(87)90117-5. [DOI] [PubMed] [Google Scholar]
- Rapraeger A. C., Bernfield M. Heparan sulfate proteoglycans from mouse mammary epithelial cells. A putative membrane proteoglycan associates quantitatively with lipid vesicles. J Biol Chem. 1983 Mar 25;258(6):3632–3636. [PubMed] [Google Scholar]
- Rapraeger A., Bernfield M. Cell surface proteoglycan of mammary epithelial cells. Protease releases a heparan sulfate-rich ectodomain from a putative membrane-anchored domain. J Biol Chem. 1985 Apr 10;260(7):4103–4109. [PubMed] [Google Scholar]
- Rapraeger A., Jalkanen M., Bernfield M. Cell surface proteoglycan associates with the cytoskeleton at the basolateral cell surface of mouse mammary epithelial cells. J Cell Biol. 1986 Dec;103(6 Pt 2):2683–2696. doi: 10.1083/jcb.103.6.2683. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rapraeger A., Jalkanen M., Endo E., Koda J., Bernfield M. The cell surface proteoglycan from mouse mammary epithelial cells bears chondroitin sulfate and heparan sulfate glycosaminoglycans. J Biol Chem. 1985 Sep 15;260(20):11046–11052. [PubMed] [Google Scholar]
- Robertson M. Retinoic acid receptor. Towards a biochemistry of morphogenesis. Nature. 1987 Dec 3;330(6147):420–421. doi: 10.1038/330420a0. [DOI] [PubMed] [Google Scholar]
- Ruch J. V., Lesot H., Karcher-Djuricic V., Meyer J. M., Mark M. Epithelial-mesenchymal interactions in tooth germs: mechanisms of differentiation. J Biol Buccale. 1983 Sep;11(3):173–193. [PubMed] [Google Scholar]
- Sanderson R. D., Bernfield M. Molecular polymorphism of a cell surface proteoglycan: distinct structures on simple and stratified epithelia. Proc Natl Acad Sci U S A. 1988 Dec;85(24):9562–9566. doi: 10.1073/pnas.85.24.9562. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sariola H., Aufderheide E., Bernhard H., Henke-Fahle S., Dippold W., Ekblom P. Antibodies to cell surface ganglioside GD3 perturb inductive epithelial-mesenchymal interactions. Cell. 1988 Jul 15;54(2):235–245. doi: 10.1016/0092-8674(88)90556-9. [DOI] [PubMed] [Google Scholar]
- Saunders S., Bernfield M. Cell surface proteoglycan binds mouse mammary epithelial cells to fibronectin and behaves as a receptor for interstitial matrix. J Cell Biol. 1988 Feb;106(2):423–430. doi: 10.1083/jcb.106.2.423. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Slack J. M., Darlington B. G., Heath J. K., Godsave S. F. Mesoderm induction in early Xenopus embryos by heparin-binding growth factors. Nature. 1987 Mar 12;326(6109):197–200. doi: 10.1038/326197a0. [DOI] [PubMed] [Google Scholar]
- Thesleff I., Hurmerinta K. Tissue interactions in tooth development. Differentiation. 1981;18(2):75–88. doi: 10.1111/j.1432-0436.1981.tb01107.x. [DOI] [PubMed] [Google Scholar]
- Thesleff I., Jalkanen M., Vainio S., Bernfield M. Cell surface proteoglycan expression correlates with epithelial-mesenchymal interaction during tooth morphogenesis. Dev Biol. 1988 Oct;129(2):565–572. doi: 10.1016/0012-1606(88)90401-0. [DOI] [PubMed] [Google Scholar]
- Thesleff I., Mackie E., Vainio S., Chiquet-Ehrismann R. Changes in the distribution of tenascin during tooth development. Development. 1987 Oct;101(2):289–296. doi: 10.1242/dev.101.2.289. [DOI] [PubMed] [Google Scholar]
- Thesleff I., Stenman S., Vaheri A., Timpl R. Changes in the matrix proteins, fibronectin and collagen, during differentiation of mouse tooth germ. Dev Biol. 1979 May;70(1):116–126. doi: 10.1016/0012-1606(79)90011-3. [DOI] [PubMed] [Google Scholar]
