Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1989 May 1;108(5):1775–1782. doi: 10.1083/jcb.108.5.1775

Arrangement of filaments and cross-links in the bee flight muscle Z disk by image analysis of oblique sections

PMCID: PMC2115572  PMID: 2715177

Abstract

Information from oblique thin sections and from three-dimensional reconstructions of tilted, transverse thin sections (Cheng, N., and J. F. Deatherage. 1989. J. Cell Biol. 108:1761-1774) has been combined to determine the three-dimensional structure of the honeybee flight muscle Z disk at 70-A resolution. The overall symmetry and structure of the Z disk and its relationship to the rest of the myofibril have been determined by tracing filaments and connecting elements on electron images of oblique sections which have been enhanced by a local crystallographic averaging technique. In the three-dimensional structure, the connecting density between actin filaments can be described as five compact, crystallographically nonequivalent domains. Features C1 and C2 are located on the transverse twofold rotation axes in the central plane of the Z disk. They are associated with the sides of actin filaments of opposite polarity. Features C3, C4, and C5 are present in two symmetry-related sets which are located on opposite sides of the central plane. C3 and C5 are each associated with two filaments of opposite polarity, interacting with the side of one filament and the end of the other filament. C3 and C5 may be involved in stabilizing actin filament ends inside the Z disk. The location of the threefold symmetric connection C4, relative to the thick filament of the adjacent sarcomere, is determined and its possible relationship to the C filament is considered.

Full Text

The Full Text of this article is available as a PDF (2.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ashhurst D. E. The Z-line in insect flight muscle. J Mol Biol. 1971 Jan 28;55(2):283–285. doi: 10.1016/0022-2836(71)90199-9. [DOI] [PubMed] [Google Scholar]
  2. Cheng N. Q., Deatherage J. F. Three-dimensional reconstruction of the Z disk of sectioned bee flight muscle. J Cell Biol. 1989 May;108(5):1761–1774. doi: 10.1083/jcb.108.5.1761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Goldstein M. A., Schroeter J. P., Sass R. L. The Z-band lattice in a slow skeletal muscle. J Muscle Res Cell Motil. 1982 Sep;3(3):333–348. doi: 10.1007/BF00713041. [DOI] [PubMed] [Google Scholar]
  4. KNAPPEIS G. G., CARLSEN F. The ultrastructure of the Z disc in skeletal muscle. J Cell Biol. 1962 May;13:323–335. doi: 10.1083/jcb.13.2.323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Locker R. H., Leet N. G. Histology of highly-stretched beef muscle. I. The fine structure of grossly stretched single fibers. J Ultrastruct Res. 1975 Jul;52(1):64–75. doi: 10.1016/s0022-5320(75)80022-0. [DOI] [PubMed] [Google Scholar]
  6. Luther P. K., Crowther R. A. Three-dimensional reconstruction from tilted sections of fish muscle M-band. Nature. 1984 Feb 9;307(5951):566–568. doi: 10.1038/307566a0. [DOI] [PubMed] [Google Scholar]
  7. MARKHAM R., HITCHBORN J. H., HILLS G. J., FREY S. THE ANATOMY OF THE TOBACCO MOSAIC VIRUS. Virology. 1964 Mar;22:342–359. doi: 10.1016/0042-6822(64)90025-x. [DOI] [PubMed] [Google Scholar]
  8. Macdonald R. D., Engel A. G. Observations on organization of Z-disk components and on rod-bodies of Z-disk origin. J Cell Biol. 1971 Feb;48(2):431–437. doi: 10.1083/jcb.48.2.431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Maruyama K., Yoshioka T., Higuchi H., Ohashi K., Kimura S., Natori R. Connectin filaments link thick filaments and Z lines in frog skeletal muscle as revealed by immunoelectron microscopy. J Cell Biol. 1985 Dec;101(6):2167–2172. doi: 10.1083/jcb.101.6.2167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Saide J. D. Identification of a connecting filament protein in insect fibrillar flight muscle. J Mol Biol. 1981 Dec 15;153(3):661–679. doi: 10.1016/0022-2836(81)90412-5. [DOI] [PubMed] [Google Scholar]
  11. Saide J. D., Ullrick W. C. Fine structure of the honeybee Z-disc. J Mol Biol. 1973 Sep 15;79(2):329–337. doi: 10.1016/0022-2836(73)90009-0. [DOI] [PubMed] [Google Scholar]
  12. Trinick J. A. End-filaments: a new structural element of vertebrate skeletal muscle thick filaments. J Mol Biol. 1981 Sep 15;151(2):309–314. doi: 10.1016/0022-2836(81)90517-9. [DOI] [PubMed] [Google Scholar]
  13. Trinick J., Knight P., Whiting A. Purification and properties of native titin. J Mol Biol. 1984 Dec 5;180(2):331–356. doi: 10.1016/s0022-2836(84)80007-8. [DOI] [PubMed] [Google Scholar]
  14. Yamaguchi M., Izumimoto M., Robson R. M., Stromer M. H. Fine structure of wide and narrow vertebrate muscle Z-lines. A proposed model and computer simulation of Z-line architecture. J Mol Biol. 1985 Aug 20;184(4):621–643. doi: 10.1016/0022-2836(85)90308-0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES