Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1989 Jun 1;108(6):2193–2200. doi: 10.1083/jcb.108.6.2193

Conformational change of rabbit aminopeptidase N into enterocyte plasma membrane domains analyzed by flow cytometry fluorescence energy transfer

PMCID: PMC2115577  PMID: 2472401

Abstract

Membrane vesicle preparations are very appropriate material for studying the topology of glycoproteins integrated into specialized plasma membrane domains of polarized cells. Here we show that the flow cytometric measurement of fluorescence energy transfer used previously to study the relationship between surface components of isolated cells can be applied to membrane vesicles. The fluorescein and rhodamine derivatives of a monoclonal antibody (4H7.1) that recognized one common epitope of the rabbit and pig aminopeptidase N were used for probing the oligomerization and conformational states of the enzyme integrated into the brush border and basolateral membrane vesicles prepared from rabbit and pig enterocytes. The high fluorescent energy transfer observed in the case of pig enzyme integrated into both types of vesicles and in the case of the rabbit enzyme integrated into basolateral membrane vesicles agreed very well with the existence of a dimeric organization, which was directly demonstrated by cross-linking experiments. Although with the latter technique we observed that the rabbit aminopeptidase was also dimerized in the brush border membrane, no energy transfer was detected with the corresponding vesicles. This indicates that the relative positions of two associated monomers differ depending on whether the rabbit aminopeptidase is transiently integrated into the basolateral membrane or permanently integrated into the brush border membrane. Cross-linking of aminopeptidases solubilized by detergent and of their ectodomains liberated by trypsin showed that only interactions between anchor domains maintained the dimeric structure of rabbit enzyme whereas interactions between ectodomains also exist in the pig enzyme. This might explain why the noticeable change in the organization of the two ectodomains observed in the case of rabbit aminopeptidase N does not occur in the case of pig enzyme.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abdella P. M., Smith P. K., Royer G. P. A new cleavable reagent for cross-linking and reversible immobilization of proteins. Biochem Biophys Res Commun. 1979 Apr 13;87(3):734–742. doi: 10.1016/0006-291x(79)92020-5. [DOI] [PubMed] [Google Scholar]
  2. Bartles J. R., Feracci H. M., Stieger B., Hubbard A. L. Biogenesis of the rat hepatocyte plasma membrane in vivo: comparison of the pathways taken by apical and basolateral proteins using subcellular fractionation. J Cell Biol. 1987 Sep;105(3):1241–1251. doi: 10.1083/jcb.105.3.1241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Benajiba A., Maroux S. Subunit structured of pig small-intestinal brush-border aminopeptidase N. Biochem J. 1981 Sep 1;197(3):573–580. doi: 10.1042/bj1970573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Blobel G., Dobberstein B. Transfer of proteins across membranes. II. Reconstitution of functional rough microsomes from heterologous components. J Cell Biol. 1975 Dec;67(3):852–862. doi: 10.1083/jcb.67.3.852. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bole D. G., Hendershot L. M., Kearney J. F. Posttranslational association of immunoglobulin heavy chain binding protein with nascent heavy chains in nonsecreting and secreting hybridomas. J Cell Biol. 1986 May;102(5):1558–1566. doi: 10.1083/jcb.102.5.1558. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brew K., Shaper J. H., Olsen K. W., Trayer I. P., Hill R. L. Cross-linking of the components of lactose synthetase with dimethylpimelimidate. J Biol Chem. 1975 Feb 25;250(4):1434–1444. [PubMed] [Google Scholar]
  7. Chan S. S., Arndt-Jovin D. J., Jovin T. M. Proximity of lectin receptors on the cell surface measured by fluorescence energy transfer in a flow system. J Histochem Cytochem. 1979 Jan;27(1):56–64. doi: 10.1177/27.1.374620. [DOI] [PubMed] [Google Scholar]
  8. Coombs K., Brown D. T. Organization of the Sindbis virus nucleocapsid as revealed by bifunctional cross-linking agents. J Mol Biol. 1987 May 20;195(2):359–371. doi: 10.1016/0022-2836(87)90657-7. [DOI] [PubMed] [Google Scholar]
  9. Copeland C. S., Doms R. W., Bolzau E. M., Webster R. G., Helenius A. Assembly of influenza hemagglutinin trimers and its role in intracellular transport. J Cell Biol. 1986 Oct;103(4):1179–1191. doi: 10.1083/jcb.103.4.1179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Damjanovich S., Trón L., Szöllösi J., Zidovetzki R., Vaz W. L., Regateiro F., Arndt-Jovin D. J., Jovin T. M. Distribution and mobility of murine histocompatibility H-2Kk antigen in the cytoplasmic membrane. Proc Natl Acad Sci U S A. 1983 Oct;80(19):5985–5989. doi: 10.1073/pnas.80.19.5985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Feracci H., Bernadac A., Hovsépian S., Fayet G., Maroux S. Aminopeptidase N is a marker for the apical pole of porcine thyroid epithelial cells in vivo and in culture. Cell Tissue Res. 1981;221(1):137–146. doi: 10.1007/BF00216576. [DOI] [PubMed] [Google Scholar]
  12. Feracci H., Maroux S. Rabbit intestinal aminopeptidase N. Purification and molecular properties. Biochim Biophys Acta. 1980 Jul;599(2):448–463. doi: 10.1016/0005-2736(80)90190-x. [DOI] [PubMed] [Google Scholar]
  13. Fraker P. J., Speck J. C., Jr Protein and cell membrane iodinations with a sparingly soluble chloroamide, 1,3,4,6-tetrachloro-3a,6a-diphrenylglycoluril. Biochem Biophys Res Commun. 1978 Feb 28;80(4):849–857. doi: 10.1016/0006-291x(78)91322-0. [DOI] [PubMed] [Google Scholar]
  14. Gennis L. S., Gennis R. B., Cantor C. R. Singlet energy-transfer studies on associating protein systems. Distance measurements on trypsin, -chymotrypsin, and their protein inhibitors. Biochemistry. 1972 Jun 20;11(13):2517–2524. doi: 10.1021/bi00763a021. [DOI] [PubMed] [Google Scholar]
  15. Gorvel J. P., Joly I., Rigal A., Chambraud L., Bourges F., Maroux S. Expression of the human A, B and related antigens in the jejunum of human and rabbit small intestines, in particular on the brush border membrane glycoproteins. Rev Fr Transfus Immunohematol. 1987 Dec;30(5):471–483. doi: 10.1016/s0338-4535(87)80107-1. [DOI] [PubMed] [Google Scholar]
  16. Gorvel J. P., Rigal A., Olive D., Mawas C., Maroux S. Identification of an early expressed marker of the luminal membrane of rabbit small intestinal columnar cells. Presence of a homologous antigen in kidney proximal tubules and glomeruli. Biol Cell. 1986;56(2):121–126. doi: 10.1111/j.1768-322x.1986.tb00449.x. [DOI] [PubMed] [Google Scholar]
  17. Gorvel J. P., Wisner-Provost A., Maroux S. Identification of glycoproteins bearing human blood group A determinants in rabbit enterocyte plasma membranes. FEBS Lett. 1982 Jun 21;143(1):17–20. doi: 10.1016/0014-5793(82)80263-9. [DOI] [PubMed] [Google Scholar]
  18. Hussain M. M., Tranum-Jensen J., Norén O., Sjöström H., Christiansen K. Reconstitution of purified amphiphilic pig intestinal microvillus aminopeptidase. Mode of membrane insertion and morphology. Biochem J. 1981 Oct 1;199(1):179–186. doi: 10.1042/bj1990179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kaufman J. F., Auffray C., Korman A. J., Shackelford D. A., Strominger J. The class II molecules of the human and murine major histocompatibility complex. Cell. 1984 Jan;36(1):1–13. doi: 10.1016/0092-8674(84)90068-0. [DOI] [PubMed] [Google Scholar]
  20. Kenny A. J., Maroux S. Topology of microvillar membrance hydrolases of kidney and intestine. Physiol Rev. 1982 Jan;62(1):91–128. doi: 10.1152/physrev.1982.62.1.91. [DOI] [PubMed] [Google Scholar]
  21. Kreis T. E., Lodish H. F. Oligomerization is essential for transport of vesicular stomatitis viral glycoprotein to the cell surface. Cell. 1986 Sep 12;46(6):929–937. doi: 10.1016/0092-8674(86)90075-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Laburthe M., Breant B., Rouyer-Fessard C. Molecular identification of receptors for vasoactive intestinal peptide in rat intestinal epithelium by covalent cross-linking. Evidence for two classes of binding sites with different structural and functional properties. Eur J Biochem. 1984 Feb 15;139(1):181–187. doi: 10.1111/j.1432-1033.1984.tb07992.x. [DOI] [PubMed] [Google Scholar]
  23. Le Bouteiller P. P., Lemonnier F. A., Mishal Z. Dual parameter, quantitative cytofluorometric analysis of endogenous H-2Kk and foreign HLA class I molecules expressed at the surface of murine transformed L cells. Exp Cell Res. 1983 Dec;149(2):587–592. doi: 10.1016/0014-4827(83)90370-1. [DOI] [PubMed] [Google Scholar]
  24. Le Bouteiller P. P., Mishal Z., Lemonnier F. A., Kourilsky F. M. Quantification by flow cytofluorimetry of HLA class I molecules at the surface of murine cells transformed by cloned HLA genes. J Immunol Methods. 1983 Jul 29;61(3):301–315. doi: 10.1016/0022-1759(83)90224-7. [DOI] [PubMed] [Google Scholar]
  25. Lomant A. J., Fairbanks G. Chemical probes of extended biological structures: synthesis and properties of the cleavable protein cross-linking reagent [35S]dithiobis(succinimidyl propionate). J Mol Biol. 1976 Jun 14;104(1):243–261. doi: 10.1016/0022-2836(76)90011-5. [DOI] [PubMed] [Google Scholar]
  26. Louvard D., Maroux S., Vannier C., Desnuelle P. Topological studies on the hydrolases bound to the intestinal brush border membrane. I. Solubilization by papain and Triton X-100. Biochim Biophys Acta. 1975 Jan 28;375(2):235–248. [PubMed] [Google Scholar]
  27. Maroux S., Louvard D., Baratti J. The aminopeptidase from hog intestinal brush border. Biochim Biophys Acta. 1973 Sep 15;321(1):282–295. doi: 10.1016/0005-2744(73)90083-1. [DOI] [PubMed] [Google Scholar]
  28. Massey D., Feracci H., Gorvel J. P., Rigal A., Soulié J. M., Maroux S. Evidence for the transit of aminopeptidase N through the basolateral membrane before it reaches the brush border of enterocytes. J Membr Biol. 1987;96(1):19–25. doi: 10.1007/BF01869331. [DOI] [PubMed] [Google Scholar]
  29. Moktari S., Feracci H., Gorvel J. P., Mishal Z., Rigal A., Maroux S. Subcellular fractionation and subcellular localization of aminopeptidase N in the rabbit enterocytes. J Membr Biol. 1986;89(1):53–63. doi: 10.1007/BF01870895. [DOI] [PubMed] [Google Scholar]
  30. Pfeffer S. R. Mannose 6-phosphate receptors and their role in targeting proteins to lysosomes. J Membr Biol. 1988 Jul;103(1):7–16. doi: 10.1007/BF01871928. [DOI] [PubMed] [Google Scholar]
  31. Rolland J. M., Dimitropoulos K., Bishop A., Hocking G. R., Nairn R. C. Fluorescence polarization assay by flow cytometry. J Immunol Methods. 1985 Jan 21;76(1):1–10. doi: 10.1016/0022-1759(85)90475-2. [DOI] [PubMed] [Google Scholar]
  32. Rothman J. E. Protein sorting by selective retention in the endoplasmic reticulum and Golgi stack. Cell. 1987 Aug 14;50(4):521–522. doi: 10.1016/0092-8674(87)90024-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Schreiber A. B., Hoebeke J., Vray B., Strosberg A. D. Resonance energy transfer studies of the mechanisms of microclustering of lentil lectin membrane receptors on HeLa cells. Exp Cell Res. 1981 Apr;132(2):273–280. doi: 10.1016/0014-4827(81)90103-8. [DOI] [PubMed] [Google Scholar]
  34. Schuy W., Will C., Kuroda K., Scholtissek C., Garten W., Klenk H. D. Mutations blocking the transport of the influenza virus hemagglutinin between the rough endoplasmic reticulum and the Golgi apparatus. EMBO J. 1986 Nov;5(11):2831–2836. doi: 10.1002/j.1460-2075.1986.tb04576.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Simons K., Fuller S. D. Cell surface polarity in epithelia. Annu Rev Cell Biol. 1985;1:243–288. doi: 10.1146/annurev.cb.01.110185.001331. [DOI] [PubMed] [Google Scholar]
  36. Solari R., Kraehenbuhl J. P. Biosynthesis of the IgA antibody receptor: a model for the transepithelial sorting of a membrane glycoprotein. Cell. 1984 Jan;36(1):61–71. doi: 10.1016/0092-8674(84)90074-6. [DOI] [PubMed] [Google Scholar]
  37. Stryer L., Haugland R. P. Energy transfer: a spectroscopic ruler. Proc Natl Acad Sci U S A. 1967 Aug;58(2):719–726. doi: 10.1073/pnas.58.2.719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Szöllösi J., Damjanovich S., Goldman C. K., Fulwyler M. J., Aszalos A. A., Goldstein G., Rao P., Talle M. A., Waldmann T. A. Flow cytometric resonance energy transfer measurements support the association of a 95-kDa peptide termed T27 with the 55-kDa Tac peptide. Proc Natl Acad Sci U S A. 1987 Oct;84(20):7246–7250. doi: 10.1073/pnas.84.20.7246. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Szöllösi J., Mátyus L., Trón L., Balázs M., Ember I., Fulwyler M. J., Damjanovich S. Flow cytometric measurements of fluorescence energy transfer using single laser excitation. Cytometry. 1987 Mar;8(2):120–128. doi: 10.1002/cyto.990080204. [DOI] [PubMed] [Google Scholar]
  40. Tartakoff A. M. Mutations that influence the secretory path in animal cells. Biochem J. 1983 Oct 15;216(1):1–9. doi: 10.1042/bj2160001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Ternynck T., Avrameas S. Polyacrylamide-protein immunoadsorbents prepared with glutaraldehyde. FEBS Lett. 1972 Jun 1;23(1):24–28. doi: 10.1016/0014-5793(72)80274-6. [DOI] [PubMed] [Google Scholar]
  42. Trón L., Szöllósi J., Damjanovich S., Helliwell S. H., Arndt-Jovin D. J., Jovin T. M. Flow cytometric measurement of fluorescence resonance energy transfer on cell surfaces. Quantitative evaluation of the transfer efficiency on a cell-by-cell basis. Biophys J. 1984 May;45(5):939–946. doi: 10.1016/S0006-3495(84)84240-X. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES