Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1989 Jun 1;108(6):2107–2115. doi: 10.1083/jcb.108.6.2107

Mechanism of inhibition of polypeptide chain initiation in calcium- depleted Ehrlich ascites tumor cells

PMCID: PMC2115578  PMID: 2500444

Abstract

Protein synthesis in Ehrlich ascites tumor cells is inhibited when cellular calcium is depleted by the addition of EGTA to the growth medium. This inhibition is at the level of polypeptide chain initiation as evidenced by a disaggregation of polyribosomes accompanied by a significant elevation in 80-S monomers. To identify direct effects of calcium on the protein synthesis apparatus we have developed a calcium- dependent, cell-free protein-synthesizing system from the Ehrlich cells by using 1,2-bis(O-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid (BAPTA), a recently developed chelator with a high (greater than 10(5)) selectivity for calcium (pKa = 6.97) over magnesium (pKa = 1.77). BAPTA inhibits protein synthesis by 70% at 1 mM and 90% at 2 mM. This effect was reversed by calcium but not by other cations tested. The levels of 43-S complexes (i.e., 40-S subunits containing bound methionyl- tRNAf.eIF-2.GTP) were significantly lower in the calcium-deprived incubations, indicating either inhibition of the rate of formation or decreased stability of 43-S complexes. Analysis of 43-S complexes on CsCl gradients showed that in BAPTA-treated lysates, 40-S subunits containing eIF-3, completely disappeared and the residual methionyl- tRNA-containing complexes were bound to 40-S subunits lacking eIF-3. Our results demonstrate a direct involvement of Ca2+ in protein synthesis and we have localized the effect of calcium deprivation to decreased binding of eIF-2 and eIF-3 to 40-S subunits.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ayuso-Parilla M., Hirsch C. A., Henshaw E. C. Release of the nonribosomal proteins from the mammalian native 40 S ribosomal subunit by aurintricarboxylic acid. J Biol Chem. 1973 Jun 25;248(12):4394–4399. [PubMed] [Google Scholar]
  2. Benne R., Hershey J. W. The mechanism of action of protein synthesis initiation factors from rabbit reticulocytes. J Biol Chem. 1978 May 10;253(9):3078–3087. [PubMed] [Google Scholar]
  3. Brostrom C. O., Bocckino S. B., Brostrom M. A. Identification of a Ca2+ requirement for protein synthesis in eukaryotic cells. J Biol Chem. 1983 Dec 10;258(23):14390–14399. [PubMed] [Google Scholar]
  4. Brostrom M. A., Chin K. V., Cade C., Gmitter D., Brostrom C. O. Stimulation of protein synthesis in pituitary cells by phorbol esters and cyclic AMP. Evidence for rapid induction of a component of translational initiation. J Biol Chem. 1987 Dec 5;262(34):16515–16523. [PubMed] [Google Scholar]
  5. Chambard J. C., Franchi A., Le Cam A., Pouysségur J. Growth factor-stimulated protein phosphorylation in G0/G1-arrested fibroblasts. Two distinct classes of growth factors with potentiating effects. J Biol Chem. 1983 Feb 10;258(3):1706–1713. [PubMed] [Google Scholar]
  6. Chandler D. E., Williams J. A. Intracellular divalent cation release in pancreatic acinar cells during stimulus-secretion coupling. I. Use of chlorotetracycline as fluorescent probe. J Cell Biol. 1978 Feb;76(2):371–385. doi: 10.1083/jcb.76.2.371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Charlton R. R., Wenner C. E. Calcium-ion transport by intact Ehrlich ascites-tumour cells. Role of respiratory substrates, Pi and temperature. Biochem J. 1978 Mar 15;170(3):537–544. doi: 10.1042/bj1700537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chin K. V., Cade C., Brostrom C. O., Galuska E. M., Brostrom M. A. Calcium-dependent regulation of protein synthesis at translational initiation in eukaryotic cells. J Biol Chem. 1987 Dec 5;262(34):16509–16514. [PubMed] [Google Scholar]
  9. Cittadini A., Scarpa A., Chance B. Calcium transport in intact Ehrlich ascites tumor cells. Biochim Biophys Acta. 1973 Jan 2;291(1):246–259. doi: 10.1016/0005-2736(73)90416-1. [DOI] [PubMed] [Google Scholar]
  10. Drust D. S., Martin T. F. Thyrotropin-releasing hormone rapidly and transiently stimulates cytosolic calcium-dependent protein phosphorylation in GH3 pituitary cells. J Biol Chem. 1982 Jul 10;257(13):7566–7573. [PubMed] [Google Scholar]
  11. Henshaw E. C. CsCl equilibrium density gradient analysis of native ribosomal subunits (and ribosomes). Methods Enzymol. 1979;59:410–421. doi: 10.1016/0076-6879(79)59102-2. [DOI] [PubMed] [Google Scholar]
  12. Henshaw E. C., Panniers R. Translational systems prepared from the Ehrlich ascites tumor cell. Methods Enzymol. 1983;101:616–629. doi: 10.1016/0076-6879(83)01042-3. [DOI] [PubMed] [Google Scholar]
  13. Hirsch C. A., Cox M. A., van Venrooij W. J., Henshaw E. C. The ribosome cycle in mammalian protein synthesis. II. Association of the native smaller ribosomal subunit with protein factors. J Biol Chem. 1973 Jun 25;248(12):4377–4385. [PubMed] [Google Scholar]
  14. Homo F., Simon J. Early effect of steroids on 45calcium uptake by mouse thymocytes. Biochem Biophys Res Commun. 1981 Sep 16;102(1):458–465. doi: 10.1016/0006-291x(81)91542-4. [DOI] [PubMed] [Google Scholar]
  15. Jagus R., Anderson W. F., Safer B. The regulation of initiation of mammalian protein synthesis. Prog Nucleic Acid Res Mol Biol. 1981;25:127–185. doi: 10.1016/s0079-6603(08)60484-5. [DOI] [PubMed] [Google Scholar]
  16. Landry Y., Lehninger A. L. Transport of calcium ions by Ehrlich ascites-tumour cells. Biochem J. 1976 Aug 15;158(2):427–438. doi: 10.1042/bj1580427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lichtman A. H., Segel G. B., Lichtman M. A. Total and exchangeable calcium in lymphocytes: effects of PHA and A23187. J Supramol Struct. 1980;14(1):65–75. doi: 10.1002/jss.400140107. [DOI] [PubMed] [Google Scholar]
  18. Martin-Pérez J., Siegmann M., Thomas G. EGF, PGF2 alpha and insulin induce the phosphorylation of identical S6 peptides in swiss mouse 3T3 cells: effect of cAMP on early sites of phosphorylation. Cell. 1984 Feb;36(2):287–294. doi: 10.1016/0092-8674(84)90222-8. [DOI] [PubMed] [Google Scholar]
  19. Ochoa S. Regulation of protein synthesis initiation in eucaryotes. Arch Biochem Biophys. 1983 Jun;223(2):325–349. doi: 10.1016/0003-9861(83)90598-2. [DOI] [PubMed] [Google Scholar]
  20. Pain V. M., Henshaw E. C. Initiation of protein synthesis in Ehrlich ascites tumour cells. Evidence for physiological variation in the association of methionyl-tRNAf with native 40-S ribosomal subunits in vivo. Eur J Biochem. 1975 Sep 15;57(2):335–342. doi: 10.1111/j.1432-1033.1975.tb02306.x. [DOI] [PubMed] [Google Scholar]
  21. Pain V. M. Initiation of protein synthesis in mammalian cells. Biochem J. 1986 May 1;235(3):625–637. doi: 10.1042/bj2350625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Panniers R., Henshaw E. C. Mechanism of inhibition of polypeptide chain initiation in heat-shocked Ehrlich ascites tumour cells. Eur J Biochem. 1984 Apr 2;140(1):209–214. doi: 10.1111/j.1432-1033.1984.tb08088.x. [DOI] [PubMed] [Google Scholar]
  23. Peterson D. T., Merrick W. C., Safer B. Binding and release of radiolabeled eukaryotic initiation factors 2 and 3 during 80 S initiation complex formation. J Biol Chem. 1979 Apr 10;254(7):2509–2516. [PubMed] [Google Scholar]
  24. Ribes G., Siegel E. G., Wollheim C. B., Renold A. E., Sharp G. W. Rapid changes in calcium content of rat pancreatic islets in response to glucose. Diabetes. 1981 Jan;30(1):52–55. doi: 10.2337/diab.30.1.52. [DOI] [PubMed] [Google Scholar]
  25. Richards C. D., Metcalfe J. C., Smith G. A., Hesketh T. R. Changes in free-calcium levels and pH in synaptosomes during transmitter release. Biochim Biophys Acta. 1984 Apr 16;803(4):215–220. doi: 10.1016/0167-4889(84)90110-1. [DOI] [PubMed] [Google Scholar]
  26. Ronning S. A., Heatley G. A., Martin T. F. Thyrotropin-releasing hormone mobilizes Ca2+ from endoplasmic reticulum and mitochondria of GH3 pituitary cells: characterization of cellular Ca2+ pools by a method based on digitonin permeabilization. Proc Natl Acad Sci U S A. 1982 Oct;79(20):6294–6298. doi: 10.1073/pnas.79.20.6294. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Rowlands A. G., Panniers R., Henshaw E. C. The catalytic mechanism of guanine nucleotide exchange factor action and competitive inhibition by phosphorylated eukaryotic initiation factor 2. J Biol Chem. 1988 Apr 25;263(12):5526–5533. [PubMed] [Google Scholar]
  28. Sawyer S. T., Cohen S. Enhancement of calcium uptake and phosphatidylinositol turnover by epidermal growth factor in A-431 cells. Biochemistry. 1981 Oct 13;20(21):6280–6286. doi: 10.1021/bi00524a057. [DOI] [PubMed] [Google Scholar]
  29. Sawyer S. T., Krantz S. B. Erythropoietin stimulates 45Ca2+ uptake in Friend virus-infected erythroid cells. J Biol Chem. 1984 Mar 10;259(5):2769–2774. [PubMed] [Google Scholar]
  30. Scorsone K. A., Panniers R., Rowlands A. G., Henshaw E. C. Phosphorylation of eukaryotic initiation factor 2 during physiological stresses which affect protein synthesis. J Biol Chem. 1987 Oct 25;262(30):14538–14543. [PubMed] [Google Scholar]
  31. Thomas A., Goumans H., Voorma H. O., Benne R. The mechanism of action of eukaryotic initiation factor 4C in protein synthesis. Eur J Biochem. 1980;107(1):39–45. doi: 10.1111/j.1432-1033.1980.tb04621.x. [DOI] [PubMed] [Google Scholar]
  32. Trachsel H., Erni B., Schreier M. H., Staehelin T. Initiation of mammalian protein synthesis. II. The assembly of the initiation complex with purified initiation factors. J Mol Biol. 1977 Nov;116(4):755–767. doi: 10.1016/0022-2836(77)90269-8. [DOI] [PubMed] [Google Scholar]
  33. Trachsel H., Staehelin T. Initiation of mammalian protein synthesis. The multiple functions of the initiation factor eIF-3. Biochim Biophys Acta. 1979 Dec 17;565(2):305–314. doi: 10.1016/0005-2787(79)90207-7. [DOI] [PubMed] [Google Scholar]
  34. Tsien R. Y. New calcium indicators and buffers with high selectivity against magnesium and protons: design, synthesis, and properties of prototype structures. Biochemistry. 1980 May 27;19(11):2396–2404. doi: 10.1021/bi00552a018. [DOI] [PubMed] [Google Scholar]
  35. Tsien R. Y., Pozzan T., Rink T. J. Calcium homeostasis in intact lymphocytes: cytoplasmic free calcium monitored with a new, intracellularly trapped fluorescent indicator. J Cell Biol. 1982 Aug;94(2):325–334. doi: 10.1083/jcb.94.2.325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. van Venrooij W. J., Henshaw E. C., Hirsch C. A. Effects of deprival of glucose or individual amino acids on polyribosome distribution and rate of protein synthesis in cultured mammalian cells. Biochim Biophys Acta. 1972 Jan 18;259(1):127–137. doi: 10.1016/0005-2787(72)90480-7. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES