Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1989 Jun 1;108(6):2201–2210. doi: 10.1083/jcb.108.6.2201

Isolation of Chinese hamster ovary cell lines expressing human acyl- coenzyme A/cholesterol acyltransferase activity

PMCID: PMC2115579  PMID: 2738092

Abstract

We have previously reported the isolation of Chinese hamster ovary cell mutants deficient in acylcoenzyme A/cholesterol acyltransferase (ACAT) activity (Cadigan, K. M., J. G. Heider, and T. Y. Chang. 1988, J. Biol. Chem. 263:274-282). We now describe a procedure for isolating cells from these mutants that have regained the ability to synthesize cholesterol esters. The protocol uses the fluorescent stain Nile red, which is specific for neutral lipids such as cholesterol ester. After ACAT mutant populations were subjected to chemical mutagenesis or transfected with human fibroblast whole genomic DNA, two revertants and one primary transformant were isolated by virtue of their higher fluorescent intensities using flow cytofluorimetry. Both the revertants and transformant have regained large amounts of intracellular cholesterol ester and ACAT activity. However, heat inactivation experiments revealed that the enzyme activity of the transformant had heat stability properties identical to that of human fibroblasts, while the ACAT activities of the revertants were similar to that of other Chinese hamster ovary cell lines. These results suggest that the molecular lesion in the ACAT mutants resides in the structural gene for the enzyme, and the transformant has corrected this defect by acquiring and stably expressing a human gene encoding the ACAT polypeptide. Secondary transformants were isolated by transfection of ACAT mutant cells with primary transformant genomic DNA. Genomic Southern analysis of the secondary transformants using a probe specific for human DNA revealed several distinct restriction fragments common to all the transformants which most likely comprise part or all of the human ACAT gene. The cell lines described here should facilitate the cloning of the gene encoding the human ACAT enzyme.

Full Text

The Full Text of this article is available as a PDF (1.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alberts A. W., Chen J., Kuron G., Hunt V., Huff J., Hoffman C., Rothrock J., Lopez M., Joshua H., Harris E. Mevinolin: a highly potent competitive inhibitor of hydroxymethylglutaryl-coenzyme A reductase and a cholesterol-lowering agent. Proc Natl Acad Sci U S A. 1980 Jul;77(7):3957–3961. doi: 10.1073/pnas.77.7.3957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Balasubramaniam S., Venkatesan S., Mitropoulos K. A., Peters T. J. The submicrosomal localization of acyl-coenzyme A-cholesterol acyltransferase and its substrate, and of cholesteryl esters in rat liver. Biochem J. 1978 Sep 15;174(3):863–872. doi: 10.1042/bj1740863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bishop J. E., Hajra A. K. A method for the chemical synthesis of 14C-labeled fatty acyl coenzyme A's of high specific activity. Anal Biochem. 1980 Aug;106(2):344–350. doi: 10.1016/0003-2697(80)90531-x. [DOI] [PubMed] [Google Scholar]
  4. Cadigan K. M., Chang T. Y. A simple method for reconstitution of CHO cell and human fibroblast acyl coenzyme A: cholesterol acyltransferase activity into liposomes. J Lipid Res. 1988 Dec;29(12):1683–1692. [PubMed] [Google Scholar]
  5. Cadigan K. M., Heider J. G., Chang T. Y. Isolation and characterization of Chinese hamster ovary cell mutants deficient in acyl-coenzyme A:cholesterol acyltransferase activity. J Biol Chem. 1988 Jan 5;263(1):274–282. [PubMed] [Google Scholar]
  6. Cham B. E., Knowles B. R. A solvent system for delipidation of plasma or serum without protein precipitation. J Lipid Res. 1976 Mar;17(2):176–181. [PubMed] [Google Scholar]
  7. Chang C. C., Chang T. Y. Cycloheximide sensitivity in regulation of acyl coenzyme A:cholesterol acyltransferase activity in Chinese hamster ovary cells. 2. Effect of sterol endogenously synthesized. Biochemistry. 1986 Apr 8;25(7):1700–1706. doi: 10.1021/bi00355a039. [DOI] [PubMed] [Google Scholar]
  8. Chang C. C., Doolittle G. M., Chang T. Y. Cycloheximide sensitivity in regulation of acyl coenzyme A:cholesterol acyltransferase activity in Chinese hamster ovary cells. 1. Effect of exogenous sterols. Biochemistry. 1986 Apr 8;25(7):1693–1699. doi: 10.1021/bi00355a038. [DOI] [PubMed] [Google Scholar]
  9. Chang T. Y., Chang C. C. Revertants of a Chinese hamster ovary cell mutant resistant to suppression by an analogue of cholesterol: isolation and partial biochemical characterization. Biochemistry. 1982 Oct 12;21(21):5316–5323. doi: 10.1021/bi00264a030. [DOI] [PubMed] [Google Scholar]
  10. Chang T. Y., Limanek J. S., Chang C. C. A simple and efficient procedure for the rapid homogenization of cultured animal cells grown in monolayer. Anal Biochem. 1981 Sep 15;116(2):298–302. doi: 10.1016/0003-2697(81)90360-2. [DOI] [PubMed] [Google Scholar]
  11. Chang T. Y., Limanek J. S. Regulation of cytosolic acetoacetyl coenzyme A thiolase, 3-hydroxy-3-methylglutaryl coenzyme A synthase, 3-hydroxy-3-methylglutaryl coenzyme A reductase, and mevalonate kinase by low density lipoprotein and by 25-hydroxycholesterol in Chinese hamster ovary cells. J Biol Chem. 1980 Aug 25;255(16):7787–7795. [PubMed] [Google Scholar]
  12. Chasin L. A., Feldman A., Konstam M., Urlaub G. Reversion of a Chinese hamster cell auxotrophic mutant. Proc Natl Acad Sci U S A. 1974 Mar;71(3):718–722. doi: 10.1073/pnas.71.3.718. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Chin J., Chang T. Y. Evidence for coordinate expression of 3-hydroxy-3-methylglutaryl coenzyme A reductase ad low density lipoprotein binding activity. J Biol Chem. 1981 Jun 25;256(12):6304–6310. [PubMed] [Google Scholar]
  14. Dayer J. M., Krane S. M., Russell R. G., Robinson D. R. Production of collagenase and prostaglandins by isolated adherent rheumatoid synovial cells. Proc Natl Acad Sci U S A. 1976 Mar;73(3):945–949. doi: 10.1073/pnas.73.3.945. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Doolittle G. M., Chang T. Y. Acyl-CoA:cholesterol acyltransferase in Chinese hamster ovary cells. Enzyme activity determined after reconstitution in phospholipid/cholesterol liposomes. Biochim Biophys Acta. 1982 Dec 13;713(3):529–537. doi: 10.1016/0005-2760(82)90313-7. [DOI] [PubMed] [Google Scholar]
  16. Doolittle G. M., Chang T. Y. Solubilization, partial purification, and reconstitution in phosphatidylcholine-cholesterol liposomes of acyl-CoA:cholesterol acyltransferase. Biochemistry. 1982 Feb 16;21(4):674–679. doi: 10.1021/bi00533a014. [DOI] [PubMed] [Google Scholar]
  17. FOLCH J., ASCOLI I., LEES M., MEATH J. A., LeBARON N. Preparation of lipide extracts from brain tissue. J Biol Chem. 1951 Aug;191(2):833–841. [PubMed] [Google Scholar]
  18. Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
  19. Goldstein J. L., Brown M. S. Binding and degradation of low density lipoproteins by cultured human fibroblasts. Comparison of cells from a normal subject and from a patient with homozygous familial hypercholesterolemia. J Biol Chem. 1974 Aug 25;249(16):5153–5162. [PubMed] [Google Scholar]
  20. Graham F. L., van der Eb A. J. A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology. 1973 Apr;52(2):456–467. doi: 10.1016/0042-6822(73)90341-3. [DOI] [PubMed] [Google Scholar]
  21. Greenspan P., Fowler S. D. Spectrofluorometric studies of the lipid probe, nile red. J Lipid Res. 1985 Jul;26(7):781–789. [PubMed] [Google Scholar]
  22. Greenspan P., Mayer E. P., Fowler S. D. Nile red: a selective fluorescent stain for intracellular lipid droplets. J Cell Biol. 1985 Mar;100(3):965–973. doi: 10.1083/jcb.100.3.965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Hashimoto S., Fogelman A. M. Smooth microsomes. a trap for cholesteryl ester formed in hepatic microsomes. J Biol Chem. 1980 Sep 25;255(18):8678–8684. [PubMed] [Google Scholar]
  24. Heider J. G., Boyett R. L. The picomole determination of free and total cholesterol in cells in culture. J Lipid Res. 1978 May;19(4):514–518. [PubMed] [Google Scholar]
  25. Hwu H. R., Roberts J. W., Davidson E. H., Britten R. J. Insertion and/or deletion of many repeated DNA sequences in human and higher ape evolution. Proc Natl Acad Sci U S A. 1986 Jun;83(11):3875–3879. doi: 10.1073/pnas.83.11.3875. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Jolly D. J., Esty A. C., Bernard H. U., Friedmann T. Isolation of a genomic clone partially encoding human hypoxanthine phosphoribosyltransferase. Proc Natl Acad Sci U S A. 1982 Aug;79(16):5038–5041. doi: 10.1073/pnas.79.16.5038. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Kaduce T. L., Schmidt R. W., Spector A. A. Acylcoenzyme A:cholesterol acyltransferase activity: solubilization and reconstitution in liposomes. Biochem Biophys Res Commun. 1978 Mar 30;81(2):462–468. doi: 10.1016/0006-291x(78)91556-5. [DOI] [PubMed] [Google Scholar]
  28. Kingsley D. M., Krieger M. Receptor-mediated endocytosis of low density lipoprotein: somatic cell mutants define multiple genes required for expression of surface-receptor activity. Proc Natl Acad Sci U S A. 1984 Sep;81(17):5454–5458. doi: 10.1073/pnas.81.17.5454. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Kinnunen P. M., DeMichele A., Lange L. G. Chemical modification of acyl-CoA:cholesterol O-acyltransferase. 1. Identification of acyl-CoA:cholesterol O-acyltransferase subtypes by differential diethyl pyrocarbonate sensitivity. Biochemistry. 1988 Sep 20;27(19):7344–7350. doi: 10.1021/bi00419a025. [DOI] [PubMed] [Google Scholar]
  30. Kinnunen P. M., Spilburg C. A., Lange L. G. Chemical modification of acyl-CoA:cholesterol O-acyltransferase. 2. Identification of a coenzyme A regulatory site by p-mercuribenzoate modification. Biochemistry. 1988 Sep 20;27(19):7351–7356. doi: 10.1021/bi00419a026. [DOI] [PubMed] [Google Scholar]
  31. Krieger M., Brown M. S., Goldstein J. L. Isolation of Chinese hamster cell mutants defective in the receptor-mediated endocytosis of low density lipoprotein. J Mol Biol. 1981 Aug 5;150(2):167–184. doi: 10.1016/0022-2836(81)90447-2. [DOI] [PubMed] [Google Scholar]
  32. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  33. Lichtenstein A. H., Brecher P. Properties of acyl-CoA:cholesterol acyltransferase in rat liver microsomes. Topological localization and effects of detergents, albumin, and polar steroids. J Biol Chem. 1980 Oct 10;255(19):9098–9104. [PubMed] [Google Scholar]
  34. Lin P. F., Zhao S. Y., Ruddle F. H. Genomic cloning and preliminary characterization of the human thymidine kinase gene. Proc Natl Acad Sci U S A. 1983 Nov;80(21):6528–6532. doi: 10.1073/pnas.80.21.6528. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Murray M. J., Shilo B. Z., Shih C., Cowing D., Hsu H. W., Weinberg R. A. Three different human tumor cell lines contain different oncogenes. Cell. 1981 Aug;25(2):355–361. doi: 10.1016/0092-8674(81)90054-4. [DOI] [PubMed] [Google Scholar]
  36. Patterson D., Carnright D. V. Biochemical genetic analysis of pyrimidine biosynthesis in mammalian cells: I. Isolation of a mutant defective in the early steps of de novo pyrimidine synthesis. Somatic Cell Genet. 1977 Sep;3(5):483–495. doi: 10.1007/BF01539120. [DOI] [PubMed] [Google Scholar]
  37. Perucho M., Hanahan D., Wigler M. Genetic and physical linkage of exogenous sequences in transformed cells. Cell. 1980 Nov;22(1 Pt 1):309–317. doi: 10.1016/0092-8674(80)90178-6. [DOI] [PubMed] [Google Scholar]
  38. Peterson G. L. A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal Biochem. 1977 Dec;83(2):346–356. doi: 10.1016/0003-2697(77)90043-4. [DOI] [PubMed] [Google Scholar]
  39. Reed K. C., Mann D. A. Rapid transfer of DNA from agarose gels to nylon membranes. Nucleic Acids Res. 1985 Oct 25;13(20):7207–7221. doi: 10.1093/nar/13.20.7207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Rinehart F. P., Ritch T. G., Deininger P. L., Schmid C. W. Renaturation rate studies of a single family of interspersed repeated sequences in human deoxyribonucleic acid. Biochemistry. 1981 May 26;20(11):3003–3010. doi: 10.1021/bi00514a003. [DOI] [PubMed] [Google Scholar]
  41. Ross A. C., Go K. J., Heider J. G., Rothblat G. H. Selective inhibition of acyl coenzyme A:cholesterol acyltransferase by compound 58-035. J Biol Chem. 1984 Jan 25;259(2):815–819. [PubMed] [Google Scholar]
  42. Rubin C. M., Houck C. M., Deininger P. L., Friedmann T., Schmid C. W. Partial nucleotide sequence of the 300-nucleotide interspersed repeated human DNA sequences. Nature. 1980 Mar 27;284(5754):372–374. doi: 10.1038/284372a0. [DOI] [PubMed] [Google Scholar]
  43. Sege R. D., Kozarsky K., Nelson D. L., Krieger M. Expression and regulation of human low-density lipoprotein receptors in Chinese hamster ovary cells. Nature. 1984 Feb 23;307(5953):742–745. doi: 10.1038/307742a0. [DOI] [PubMed] [Google Scholar]
  44. Shih C., Weinberg R. A. Isolation of a transforming sequence from a human bladder carcinoma cell line. Cell. 1982 May;29(1):161–169. doi: 10.1016/0092-8674(82)90100-3. [DOI] [PubMed] [Google Scholar]
  45. Southern E. M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975 Nov 5;98(3):503–517. doi: 10.1016/s0022-2836(75)80083-0. [DOI] [PubMed] [Google Scholar]
  46. Southern P. J., Berg P. Transformation of mammalian cells to antibiotic resistance with a bacterial gene under control of the SV40 early region promoter. J Mol Appl Genet. 1982;1(4):327–341. [PubMed] [Google Scholar]
  47. Suckling K. E., Boyd G. S., Smellie C. G. Properties of a solubilised and reconstituted preparation of acyl-CoA:cholesterol acyltransferase from rat liver. Biochim Biophys Acta. 1982 Feb 15;710(2):154–163. doi: 10.1016/0005-2760(82)90145-x. [DOI] [PubMed] [Google Scholar]
  48. Suckling K. E., Stange E. F. Role of acyl-CoA: cholesterol acyltransferase in cellular cholesterol metabolism. J Lipid Res. 1985 Jun;26(6):647–671. [PubMed] [Google Scholar]
  49. Tashima M., Calabretta B., Torelli G., Scofield M., Maizel A., Saunders G. F. Presence of a highly repetitive and widely dispersed DNA sequence in the human genome. Proc Natl Acad Sci U S A. 1981 Mar;78(3):1508–1512. doi: 10.1073/pnas.78.3.1508. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Urlaub G., Chasin L. A. Isolation of Chinese hamster cell mutants deficient in dihydrofolate reductase activity. Proc Natl Acad Sci U S A. 1980 Jul;77(7):4216–4220. doi: 10.1073/pnas.77.7.4216. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Wigler M., Pellicer A., Silverstein S., Axel R., Urlaub G., Chasin L. DNA-mediated transfer of the adenine phosphoribosyltransferase locus into mammalian cells. Proc Natl Acad Sci U S A. 1979 Mar;76(3):1373–1376. doi: 10.1073/pnas.76.3.1373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Wigler M., Sweet R., Sim G. K., Wold B., Pellicer A., Lacy E., Maniatis T., Silverstein S., Axel R. Transformation of mammalian cells with genes from procaryotes and eucaryotes. Cell. 1979 Apr;16(4):777–785. doi: 10.1016/0092-8674(79)90093-x. [DOI] [PubMed] [Google Scholar]
  53. Zahler W. L., Barden R. E., Cleland W. W. Some physical properties of palmityl-coenzyme A micelles. Biochim Biophys Acta. 1968 Sep 2;164(1):1–11. doi: 10.1016/0005-2760(68)90065-9. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES