Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1989 Jun 1;108(6):2007–2016. doi: 10.1083/jcb.108.6.2007

Alteration by heat shock and immunological characterization of Drosophila small nuclear ribonucleoproteins

PMCID: PMC2115597  PMID: 2525559

Abstract

Sera from human patients with systemic lupus erythematosus (SLE) have been shown to react with snRNP particles of both mammals and Drosophila (Mount, S. M. and J. A. Steitz. 1981. Nucleic Acids Res. 9:6351-6368). We have utilized fully characterized monospecific sera and specifically purified antibodies to carry out indirect immunofluorescence experiments with frozen sections of Drosophila embryos. Embryos subjected to severe heat shock before sectioning showed reduced binding of anti-Sm sera. Anti-nRNP sera reacted identically with antigens of heat shocked and non-heat-shocked sections. The reduction in anti-Sm fluorescence was restored by a brief salt wash. These results imply a noncovalent alteration in the conformation of Sm antigens with the administration of heat shock that can revert with exposure to salt. Drosophila antigens have been compared to mammalian standards, showing partial identity with bovine spleen extract (BSE) antigens when reacted with anti-Sm sera. The antigenic relatedness between affinity-purified heat-shocked and non-heat-shocked Drosophila antigens and their mammalian homologues was examined by quantitative ELISA methodology. In all cases, the Drosophila antigens from heat-shocked and non-heat- shocked embryos were identical. We theorize that the heat shock-induced alteration of Sm antigen reverst during extraction. Because the snRNP antigens have been shown to be involved in splicing, and because splicing is inhibited during heat shock (Yost, H. J., and S. Lindquist. 1986. Cell. 45:185-193), our results provide information on the nature and stability of a change in these antigens which may be a central element in control of the heat shock response.

Full Text

The Full Text of this article is available as a PDF (2.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chirico W. J., Waters M. G., Blobel G. 70K heat shock related proteins stimulate protein translocation into microsomes. Nature. 1988 Apr 28;332(6167):805–810. doi: 10.1038/332805a0. [DOI] [PubMed] [Google Scholar]
  2. Deshaies R. J., Koch B. D., Werner-Washburne M., Craig E. A., Schekman R. A subfamily of stress proteins facilitates translocation of secretory and mitochondrial precursor polypeptides. Nature. 1988 Apr 28;332(6167):800–805. doi: 10.1038/332800a0. [DOI] [PubMed] [Google Scholar]
  3. Garbe J. C., Bendena W. G., Alfano M., Pardue M. L. A Drosophila heat shock locus with a rapidly diverging sequence but a conserved structure. J Biol Chem. 1986 Dec 25;261(36):16889–16894. [PubMed] [Google Scholar]
  4. Green M. R. Pre-mRNA splicing. Annu Rev Genet. 1986;20:671–708. doi: 10.1146/annurev.ge.20.120186.003323. [DOI] [PubMed] [Google Scholar]
  5. Hinterberger M., Pettersson I., Steitz J. A. Isolation of small nuclear ribonucleoproteins containing U1, U2, U4, U5, and U6 RNAs. J Biol Chem. 1983 Feb 25;258(4):2604–2613. [PubMed] [Google Scholar]
  6. Ingolia T. D., Craig E. A. Drosophila gene related to the major heat shock-induced gene is transcribed at normal temperatures and not induced by heat shock. Proc Natl Acad Sci U S A. 1982 Jan;79(2):525–529. doi: 10.1073/pnas.79.2.525. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kinlaw C. S., Robberson B. L., Berget S. M. Fractionation and characterization of human small nuclear ribonucleoproteins containing U1 and U2 RNAs. J Biol Chem. 1983 Jun 10;258(11):7181–7189. [PubMed] [Google Scholar]
  8. Kurata N., Tan E. M. Identification of antibodies to nuclear acidic antigens by counterimmunoelectrophoresis. Arthritis Rheum. 1976 May-Jun;19(3):574–580. doi: 10.1002/art.1780190309. [DOI] [PubMed] [Google Scholar]
  9. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  10. Leicht B. G., Biessmann H., Palter K. B., Bonner J. J. Small heat shock proteins of Drosophila associate with the cytoskeleton. Proc Natl Acad Sci U S A. 1986 Jan;83(1):90–94. doi: 10.1073/pnas.83.1.90. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lerner M. R., Steitz J. A. Antibodies to small nuclear RNAs complexed with proteins are produced by patients with systemic lupus erythematosus. Proc Natl Acad Sci U S A. 1979 Nov;76(11):5495–5499. doi: 10.1073/pnas.76.11.5495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Mattioli M., Reichlin M. Characterization of a soluble nuclear ribonucleoprotein antigen reactive with SLE sera. J Immunol. 1971 Nov;107(5):1281–1290. [PubMed] [Google Scholar]
  13. McNeilage L. J., Whittingham S. Use of the Bio-Rad silver stain to identify gel purified RNA components of small nuclear ribonucleoprotein antigens. J Immunol Methods. 1984 Feb 10;66(2):253–260. doi: 10.1016/0022-1759(84)90336-3. [DOI] [PubMed] [Google Scholar]
  14. Mount S. M., Steitz J. A. Sequence of U1 RNA from Drosophila melanogaster: implications for U1 secondary structure and possible involvement in splicing. Nucleic Acids Res. 1981 Dec 11;9(23):6351–6368. doi: 10.1093/nar/9.23.6351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. OUCHTERLONY O. Diffusion-in-gel methods for immunological analysis. Prog Allergy. 1958;5:1–78. [PubMed] [Google Scholar]
  16. Rogers J., Wall R. A mechanism for RNA splicing. Proc Natl Acad Sci U S A. 1980 Apr;77(4):1877–1879. doi: 10.1073/pnas.77.4.1877. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Velazquez J. M., Lindquist S. hsp70: nuclear concentration during environmental stress and cytoplasmic storage during recovery. Cell. 1984 Mar;36(3):655–662. doi: 10.1016/0092-8674(84)90345-3. [DOI] [PubMed] [Google Scholar]
  18. Vincent M., Tanguay R. M. Different intracellular distributions of heat-shock and arsenite-induced proteins in Drosophila Kc cells. Possible relation with the phosphorylation and translocation of a major cytoskeletal protein. J Mol Biol. 1982 Dec 5;162(2):365–378. doi: 10.1016/0022-2836(82)90532-0. [DOI] [PubMed] [Google Scholar]
  19. Wieben E. D., Pederson T. Small nuclear ribonucleoproteins of Drosophila: identification of U1 RNA-associated proteins and their behavior during heat shock. Mol Cell Biol. 1982 Aug;2(8):914–920. doi: 10.1128/mcb.2.8.914. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Wooley J. C., Cone R. D., Tartof D., Chung S. Y. Small nuclear ribonucleoprotein complexes of Drosophila melanogaster. Proc Natl Acad Sci U S A. 1982 Nov;79(22):6762–6766. doi: 10.1073/pnas.79.22.6762. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Yost H. J., Lindquist S. RNA splicing is interrupted by heat shock and is rescued by heat shock protein synthesis. Cell. 1986 Apr 25;45(2):185–193. doi: 10.1016/0092-8674(86)90382-x. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES