Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1989 Jun 1;108(6):2233–2240. doi: 10.1083/jcb.108.6.2233

An investigation of mitochondrial inner membranes by rapid-freeze deep- etch techniques

PMCID: PMC2115613  PMID: 2525561

Abstract

Physical fixation by rapid freezing followed by freeze-fracture and deep-etching has provided the means for potentially seeing the three- dimensional arrangement in the native state of particles on mitochondrial inner membranes. We have used these techniques to study the tubular cristae of Paramecium in the hope of determining the arrangement of F1 complexes, their abundance, and location in the membranes. We also sought information regarding other respiratory complexes in these membranes. Our results, supported by stereo pairs, show that F1 complexes are arranged as a double row of particles spaced at 12 nm along each row as a zipper following the full length of the outer curve of the helically shaped tubular cristae. There are an average of 1,500 highly ordered F1 complexes per micrometer squared of 50-nm tubular cristae surface. The F1 complexes definitely lie outside the membranes in their native state. Other particle subsets, also nonrandomly arrayed, were seen. One such population located along the inner helical curve consisted of large 13-nm-wide particles that were spaced at 30 nm center-to-center. Such particles, because of their large size and relative abundance when compared to F1 units, resemble complex I of the respiratory complexes. Any models attempting to understand the coupling of respiratory complexes with F0F1 ATPase in Paramecium must take into account a relatively high degree of order and potential immobility of at least some of these integral membrane complexes.

Full Text

The Full Text of this article is available as a PDF (3.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen R. D., Fok A. K. Membrane recycling and endocytosis in Paramecium confirmed by horseradish peroxidase pulse-chase studies. J Cell Sci. 1980 Oct;45:131–145. doi: 10.1242/jcs.45.1.131. [DOI] [PubMed] [Google Scholar]
  2. Boekema E. J., Van Heel M. G., Van Bruggen E. F. Three-dimensional structure of bovine NADH:ubiquinone oxidoreductase of the mitochondrial respiratory chain. Biochim Biophys Acta. 1984 May 31;787(1):19–26. doi: 10.1016/0167-4838(84)90103-1. [DOI] [PubMed] [Google Scholar]
  3. Capaldi R. A. Arrangement of proteins in the mitochondrial inner membrane. Biochim Biophys Acta. 1982 Nov 30;694(3):291–306. doi: 10.1016/0304-4157(82)90009-0. [DOI] [PubMed] [Google Scholar]
  4. Ernster L., Schatz G. Mitochondria: a historical review. J Cell Biol. 1981 Dec;91(3 Pt 2):227s–255s. doi: 10.1083/jcb.91.3.227s. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fok A. K., Allen R. D. Axenic Paramecium caudatum. I. Mass culture and structure. J Protozool. 1979 Aug;26(3):463–470. doi: 10.1111/j.1550-7408.1979.tb04654.x. [DOI] [PubMed] [Google Scholar]
  6. Friend D. S., Heuser J. E. Orderly particle arrays on the mitochondrial outer membrane in rapidly-frozen sperm. Anat Rec. 1981 Feb;199(2):159–175. doi: 10.1002/ar.1091990202. [DOI] [PubMed] [Google Scholar]
  7. Giddings T. H., Wasmann C., Staehelin L. A. Structure of the Thylakoids and Envelope Membranes of the Cyanelles of Cyanophora paradoxa. Plant Physiol. 1983 Feb;71(2):409–419. doi: 10.1104/pp.71.2.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gounaris K., Barber J., Harwood J. L. The thylakoid membranes of higher plant chloroplasts. Biochem J. 1986 Jul 15;237(2):313–326. doi: 10.1042/bj2370313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hatefi Y. The mitochondrial electron transport and oxidative phosphorylation system. Annu Rev Biochem. 1985;54:1015–1069. doi: 10.1146/annurev.bi.54.070185.005055. [DOI] [PubMed] [Google Scholar]
  10. Heuser J. E., Salpeter S. R. Organization of acetylcholine receptors in quick-frozen, deep-etched, and rotary-replicated Torpedo postsynaptic membrane. J Cell Biol. 1979 Jul;82(1):150–173. doi: 10.1083/jcb.82.1.150. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hirokawa N. Quick freeze, deep etch of the cytoskeleton. Methods Enzymol. 1986;134:598–612. doi: 10.1016/0076-6879(86)34125-9. [DOI] [PubMed] [Google Scholar]
  12. Israelachvili J. N., Marcelja S., Horn R. G. Physical principles of membrane organization. Q Rev Biophys. 1980 May;13(2):121–200. doi: 10.1017/s0033583500001645. [DOI] [PubMed] [Google Scholar]
  13. Israelachvili J. N., Mitchell D. J., Ninham B. W. Theory of self-assembly of lipid bilayers and vesicles. Biochim Biophys Acta. 1977 Oct 17;470(2):185–201. doi: 10.1016/0005-2736(77)90099-2. [DOI] [PubMed] [Google Scholar]
  14. Mitchell P. The Ninth Sir Hans Krebs Lecture. Compartmentation and communication in living systems. Ligand conduction: a general catalytic principle in chemical, osmotic and chemiosmotic reaction systems. Eur J Biochem. 1979 Mar 15;95(1):1–20. doi: 10.1111/j.1432-1033.1979.tb12934.x. [DOI] [PubMed] [Google Scholar]
  15. Parsons D. F. Mitochondrial Structure: Two Types of Subunits on Negatively Stained Mitochondrial Membranes. Science. 1963 May 31;140(3570):985–987. doi: 10.1126/science.140.3570.985. [DOI] [PubMed] [Google Scholar]
  16. Prezbindowski K. S., Ruzicka F. J., Sun F. F., Crane F. L. Membrane structure: binary membranes of mitochondrial cristae. Exp Cell Res. 1969 Oct;57(2):385–391. doi: 10.1016/0014-4827(69)90164-5. [DOI] [PubMed] [Google Scholar]
  17. Schwab-Stey H., Schwab D., Krebs W. Electron microscopic examination of isolated mitochondria of Tetrahymena pyriformis. J Ultrastruct Res. 1971 Oct;37(1):82–93. doi: 10.1016/s0022-5320(71)80042-4. [DOI] [PubMed] [Google Scholar]
  18. Schwerzmann K., Cruz-Orive L. M., Eggman R., Sänger A., Weibel E. R. Molecular architecture of the inner membrane of mitochondria from rat liver: a combined biochemical and stereological study. J Cell Biol. 1986 Jan;102(1):97–103. doi: 10.1083/jcb.102.1.97. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Sjöstrand F. S. The diversity of function and structure of cellular membranes. Subcell Biochem. 1983;9:335–393. doi: 10.1007/978-1-4613-3533-7_5. [DOI] [PubMed] [Google Scholar]
  20. Slater E. C. The mechanism of the conservation of energy of biological oxidations. Eur J Biochem. 1987 Aug 3;166(3):489–504. doi: 10.1111/j.1432-1033.1987.tb13542.x. [DOI] [PubMed] [Google Scholar]
  21. Staehelin L. A., Arntzen C. J. Regulation of chloroplast membrane function: protein phosphorylation changes the spatial organization of membrane components. J Cell Biol. 1983 Nov;97(5 Pt 1):1327–1337. doi: 10.1083/jcb.97.5.1327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Tanaka K. Demonstration of intracellular structures by high resolution scanning electron microscopy. Scan Electron Microsc. 1981;(Pt 2):1–8. [PubMed] [Google Scholar]
  23. Telford J. N., Langworthy T. A., Racker E. Three proton pumps, morphology and movements. J Bioenerg Biomembr. 1984 Dec;16(5-6):335–351. doi: 10.1007/BF00743230. [DOI] [PubMed] [Google Scholar]
  24. Telford J. N., Racker E. A method for increasing contrast of mitochondrial inner membrane spheres in thin sections of epon-araldite embedded tissue. J Cell Biol. 1973 May;57(2):580–586. doi: 10.1083/jcb.57.2.580. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES