Abstract
Nebulin, a giant myofibrillar protein (600-800 kD) that is abundant (3%) in the sarcomere of a wide range of skeletal muscles, has been proposed as a component of a cytoskeletal matrix that coexists with actin and myosin filaments within the sarcomere. Immunoblot analysis indicates that although polypeptides of similar size are present in cardiac and smooth muscles at low abundance, those proteins show no immunological cross-reactivity with skeletal muscle nebulin. Gel analysis reveals that nebulins in various skeletal muscles of rabbit belong to at least two classes of size variants. A monospecific antibody has been used to localize nebulin by immunoelectron microscopy in a mechanically split rabbit psoas muscle fiber preparation. Labeled split fibers exhibit six pairs of stripes of antibody-imparted transverse densities spaced at 0.1-1.0 micron from the Z line within each sarcomere. These epitopes maintain a fixed distance to the Z line irrespective of sarcomere length and do not exhibit the characteristic elastic stretch-response of titin epitopes within the I band domain. It is proposed that nebulin constitutes a set of inextensible filaments attached at one end to the Z line and that nebulin filaments are in parallel, and not in series, with titin filaments. Thus the skeletal muscle sarcomere may have two sets of nonactomyosin filaments: a set of I segment-linked nebulin filaments and a set of A segment-linked titin filaments. This four-filament sarcomere model raises the possibility that nebulin and titin might act as organizing templates and length- determining factors for actin and myosin respectively.
Full Text
The Full Text of this article is available as a PDF (4.7 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bordas J., Mant G. R., Diakun G. P., Nave C. X-ray diffraction evidence for the existence of 102.0- and 230.0-nm transverse periodicities in striated muscle. J Cell Biol. 1987 Sep;105(3):1311–1318. doi: 10.1083/jcb.105.3.1311. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cooke P. A periodic cytoskeletal lattice in striated muscle. Cell Muscle Motil. 1985;6:287–313. doi: 10.1007/978-1-4757-4723-2_9. [DOI] [PubMed] [Google Scholar]
- Horowits R., Kempner E. S., Bisher M. E., Podolsky R. J. A physiological role for titin and nebulin in skeletal muscle. Nature. 1986 Sep 11;323(6084):160–164. doi: 10.1038/323160a0. [DOI] [PubMed] [Google Scholar]
- Hu D. H., Kimura S., Maruyama K. Sodium dodecyl sulfate gel electrophoresis studies of connectin-like high molecular weight proteins of various types of vertebrate and invertebrate muscles. J Biochem. 1986 May;99(5):1485–1492. doi: 10.1093/oxfordjournals.jbchem.a135618. [DOI] [PubMed] [Google Scholar]
- Locker R. H., Leet N. G. Histology of highly-stretched beef muscle. IV. Evidence for movement of gap filaments through the Z-line, using the N2-line and M-line as markers. J Ultrastruct Res. 1976 Jul;56(1):31–38. doi: 10.1016/s0022-5320(76)80138-4. [DOI] [PubMed] [Google Scholar]
- Locker R. H., Wild D. J. A comparative study of high molecular weight proteins in various types of muscle across the animal kingdom. J Biochem. 1986 May;99(5):1473–1484. doi: 10.1093/oxfordjournals.jbchem.a135617. [DOI] [PubMed] [Google Scholar]
- Locker R. H., Wild D. J. The N-lines of skeletal muscle. J Ultrastruct Res. 1984 Sep;88(3):207–222. doi: 10.1016/s0022-5320(84)90119-9. [DOI] [PubMed] [Google Scholar]
- Maruyama K., Kimura S., Ohashi K., Kuwano Y. Connectin, an elastic protein of muscle. Identification of "titin" with connectin. J Biochem. 1981 Mar;89(3):701–709. doi: 10.1093/oxfordjournals.jbchem.a133249. [DOI] [PubMed] [Google Scholar]
- Maruyama K., Yoshioka T., Higuchi H., Ohashi K., Kimura S., Natori R. Connectin filaments link thick filaments and Z lines in frog skeletal muscle as revealed by immunoelectron microscopy. J Cell Biol. 1985 Dec;101(6):2167–2172. doi: 10.1083/jcb.101.6.2167. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Page S. G. Fine structure of tortoise skeletal muscle. J Physiol. 1968 Aug;197(3):709–715. doi: 10.1113/jphysiol.1968.sp008583. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Robinson T. F., Winegrad S. The measurement and dynamic implications of thin filament lengths in heart muscle. J Physiol. 1979 Jan;286:607–619. doi: 10.1113/jphysiol.1979.sp012640. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Somerville L. L., Wang K. In vivo phosphorylation of titin and nebulin in frog skeletal muscle. Biochem Biophys Res Commun. 1987 Sep 30;147(3):986–992. doi: 10.1016/s0006-291x(87)80167-5. [DOI] [PubMed] [Google Scholar]
- Somerville L. L., Wang K. Sarcomere matrix of striated muscle: in vivo phosphorylation of titin and nebulin in mouse diaphragm muscle. Arch Biochem Biophys. 1988 Apr;262(1):118–129. doi: 10.1016/0003-9861(88)90174-9. [DOI] [PubMed] [Google Scholar]
- Somerville L. L., Wang K. The ultrasensitive silver "protein" stain also detects nanograms of nucleic acids. Biochem Biophys Res Commun. 1981 Sep 16;102(1):53–58. doi: 10.1016/0006-291x(81)91487-x. [DOI] [PubMed] [Google Scholar]
- Stedman H., Browning K., Oliver N., Oronzi-Scott M., Fischbeck K., Sarkar S., Sylvester J., Schmickel R., Wang K. Nebulin cDNAs detect a 25-kilobase transcript in skeletal muscle and localize to human chromosome 2. Genomics. 1988 Jan;2(1):1–7. doi: 10.1016/0888-7543(88)90102-4. [DOI] [PubMed] [Google Scholar]
- Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Trinick J., Knight P., Whiting A. Purification and properties of native titin. J Mol Biol. 1984 Dec 5;180(2):331–356. doi: 10.1016/s0022-2836(84)80007-8. [DOI] [PubMed] [Google Scholar]
- Wang K. Purification of titin and nebulin. Methods Enzymol. 1982;85(Pt B):264–274. doi: 10.1016/0076-6879(82)85025-8. [DOI] [PubMed] [Google Scholar]
- Wang K., Ramirez-Mitchell R. A network of transverse and longitudinal intermediate filaments is associated with sarcomeres of adult vertebrate skeletal muscle. J Cell Biol. 1983 Feb;96(2):562–570. doi: 10.1083/jcb.96.2.562. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang K. Sarcomere-associated cytoskeletal lattices in striated muscle. Review and hypothesis. Cell Muscle Motil. 1985;6:315–369. doi: 10.1007/978-1-4757-4723-2_10. [DOI] [PubMed] [Google Scholar]
- Wang K., Williamson C. L. Identification of an N2 line protein of striated muscle. Proc Natl Acad Sci U S A. 1980 Jun;77(6):3254–3258. doi: 10.1073/pnas.77.6.3254. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang S. M., Greaser M. L. Immunocytochemical studies using a monoclonal antibody to bovine cardiac titin on intact and extracted myofibrils. J Muscle Res Cell Motil. 1985 Jun;6(3):293–312. doi: 10.1007/BF00713171. [DOI] [PubMed] [Google Scholar]
