Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1988 Dec 1;107(6):2647–2656. doi: 10.1083/jcb.107.6.2647

Estramustine binds a MAP-1-like protein to inhibit microtubule assembly in vitro and disrupt microtubule organization in DU 145 cells

PMCID: PMC2115649  PMID: 3060470

Abstract

The twofold purpose of the study was (a) to determine if a MAP-1-like protein was expressed in human prostatic DU 145 cells and (b) to demonstrate whether a novel antimicrotubule drug, estramustine, binds the MAP-1-like protein to disrupt microtubules. SDS-PAGE and Western blots showed that a 330-kD protein was associated with microtubules isolated in an assembly buffer containing 10 microM taxol and 10 mM adenylylimidodiphosphate. After purification to homogeneity on an A5m agarose column, the 330-kD protein was found to promote 6 S tubulin assembly. Turbidimetric (A350), SDS-PAGE, and electron microscopic studies revealed that micromolar estramustine inhibited assembly promoted by the 330-kD protein. Similarly, estramustine inhibited binding of the 330-kD protein to 6-S microtubules independently stimulated to assemble with taxol. Immunofluorescent studies with beta- tubulin antibody (27B) and MAP-1 antibody (MI-AI) revealed that 60 microM estramustine (a) caused disassembly of MAP-1 microtubules in DU 145 cells and (b) removed MAP-1 from the surfaces of microtubules stabilized with 0.1 microM taxol. Taken together the data suggested that estramustine binds to a 330-kD MAP-1-like protein to disrupt microtubules in tumor cells.

Full Text

The Full Text of this article is available as a PDF (3.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amos L. A. Arrangement of high molecular weight associated proteins on purified mammalian brain microtubules. J Cell Biol. 1977 Mar;72(3):642–654. doi: 10.1083/jcb.72.3.642. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Asai D. J., Thompson W. C., Wilson L., Dresden C. F., Schulman H., Purich D. L. Microtubule-associated proteins (MAPs): a monoclonal antibody to MAP 1 decorates microtubules in vitro but stains stress fibers and not microtubules in vivo. Proc Natl Acad Sci U S A. 1985 Mar;82(5):1434–1438. doi: 10.1073/pnas.82.5.1434. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Binder L. I., Frankfurter A., Rebhun L. I. Differential localization of MAP-2 and tau in mammalian neurons in situ. Ann N Y Acad Sci. 1986;466:145–166. doi: 10.1111/j.1749-6632.1986.tb38392.x. [DOI] [PubMed] [Google Scholar]
  4. Bloom G. S., Luca F. C., Collins C. A., Vallee R. B. Isolation of mitotic microtubule-associated proteins from sea urchin eggs. Ann N Y Acad Sci. 1986;466:328–339. doi: 10.1111/j.1749-6632.1986.tb38404.x. [DOI] [PubMed] [Google Scholar]
  5. Bloom G. S., Luca F. C., Vallee R. B. Microtubule-associated protein 1B: identification of a major component of the neuronal cytoskeleton. Proc Natl Acad Sci U S A. 1985 Aug;82(16):5404–5408. doi: 10.1073/pnas.82.16.5404. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bloom G. S., Luca F. C., Vallee R. B. Widespread cellular distribution of MAP-1A (microtubule-associated protein 1A) in the mitotic spindle and on interphase microtubules. J Cell Biol. 1984 Jan;98(1):331–340. doi: 10.1083/jcb.98.1.331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bloom G. S., Schoenfeld T. A., Vallee R. B. Widespread distribution of the major polypeptide component of MAP 1 (microtubule-associated protein 1) in the nervous system. J Cell Biol. 1984 Jan;98(1):320–330. doi: 10.1083/jcb.98.1.320. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  9. Bulinski J. C., Borisy G. G. Widespread distribution of a 210,000 mol wt microtubule-associated protein in cells and tissues of primates. J Cell Biol. 1980 Dec;87(3 Pt 1):802–808. doi: 10.1083/jcb.87.3.802. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Caceres A., Binder L. I., Payne M. R., Bender P., Rebhun L., Steward O. Differential subcellular localization of tubulin and the microtubule-associated protein MAP2 in brain tissue as revealed by immunocytochemistry with monoclonal hybridoma antibodies. J Neurosci. 1984 Feb;4(2):394–410. doi: 10.1523/JNEUROSCI.04-02-00394.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. De Brabander M., Bulinski J. C., Geuens G., De Mey J., Borisy G. G. Immunoelectron microscopic localization of the 210,000-mol wt microtubule-associated protein in cultured cells of primates. J Cell Biol. 1981 Nov;91(2 Pt 1):438–445. doi: 10.1083/jcb.91.2.438. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Drubin D., Kobayashi S., Kirschner M. Association of tau protein with microtubules in living cells. Ann N Y Acad Sci. 1986;466:257–268. doi: 10.1111/j.1749-6632.1986.tb38398.x. [DOI] [PubMed] [Google Scholar]
  13. Fridén B., Wallin M., Deinum J., Prasad V., Luduena R. Effect of estramustine phosphate on the assembly of trypsin-treated microtubules and microtubules reconstituted from purified tubulin with either tau, MAP2, or the tubulin-binding fragment of MAP2. Arch Biochem Biophys. 1987 Aug 15;257(1):123–130. doi: 10.1016/0003-9861(87)90550-9. [DOI] [PubMed] [Google Scholar]
  14. Kanje M., Deinum J., Wallin M., Ekström P., Edström A., Hartley-Asp B. Effect of estramustine phosphate on the assembly of isolated bovine brain microtubules and fast axonal transport in the frog sciatic nerve. Cancer Res. 1985 May;45(5):2234–2239. [PubMed] [Google Scholar]
  15. Kim H., Binder L. I., Rosenbaum J. L. The periodic association of MAP2 with brain microtubules in vitro. J Cell Biol. 1979 Feb;80(2):266–276. doi: 10.1083/jcb.80.2.266. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kotani S., Murofushi H., Maekawa S., Aizawa H., Kaji K., Sakai H. Identification of the 190 kD microtubule-associated protein in cultured fibroblasts and its association with interphase and mitotic microtubules. Cell Struct Funct. 1987 Feb;12(1):1–9. doi: 10.1247/csf.12.1. [DOI] [PubMed] [Google Scholar]
  17. Kristofferson D., Mitchison T., Kirschner M. Direct observation of steady-state microtubule dynamics. J Cell Biol. 1986 Mar;102(3):1007–1019. doi: 10.1083/jcb.102.3.1007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  19. Lewis S. A., Sherline P., Cowan N. J. A cloned cDNA encoding MAP1 detects a single copy gene in mouse and a brain-abundant RNA whose level decreases during development. J Cell Biol. 1986 Jun;102(6):2106–2114. doi: 10.1083/jcb.102.6.2106. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lewis S. A., Villasante A., Sherline P., Cowan N. J. Brain-specific expression of MAP2 detected using a cloned cDNA probe. J Cell Biol. 1986 Jun;102(6):2098–2105. doi: 10.1083/jcb.102.6.2098. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Matus A., Riederer B. Microtubule-associated proteins in the developing brain. Ann N Y Acad Sci. 1986;466:167–179. doi: 10.1111/j.1749-6632.1986.tb38393.x. [DOI] [PubMed] [Google Scholar]
  22. Morrissey J. H. Silver stain for proteins in polyacrylamide gels: a modified procedure with enhanced uniform sensitivity. Anal Biochem. 1981 Nov 1;117(2):307–310. doi: 10.1016/0003-2697(81)90783-1. [DOI] [PubMed] [Google Scholar]
  23. Murphy D. B., Borisy G. G. Association of high-molecular-weight proteins with microtubules and their role in microtubule assembly in vitro. Proc Natl Acad Sci U S A. 1975 Jul;72(7):2696–2700. doi: 10.1073/pnas.72.7.2696. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Murphy D. B., Johnson K. A., Borisy G. G. Role of tubulin-associated proteins in microtubule nucleation and elongation. J Mol Biol. 1977 Nov 25;117(1):33–52. doi: 10.1016/0022-2836(77)90021-3. [DOI] [PubMed] [Google Scholar]
  25. Olmsted J. B., Asnes C. F., Parysek L. M., Lyon H. D., Kidder G. M. Distribution of MAP-4 in cells and in adult and developing mouse tissues. Ann N Y Acad Sci. 1986;466:292–305. doi: 10.1111/j.1749-6632.1986.tb38401.x. [DOI] [PubMed] [Google Scholar]
  26. Olmsted J. B., Lyon H. D. A microtubule-associated protein specific to differentiated neuroblastoma cells. J Biol Chem. 1981 Apr 10;256(7):3507–3511. [PubMed] [Google Scholar]
  27. Sato C., Nishizawa K., Nakamura H., Komagoe Y., Shimada K., Ueda R., Suzuki S. Monoclonal antibody against microtubule associated protein-1 produces immunofluorescent spots in the nucleus and centrosome of cultured mammalian cells. Cell Struct Funct. 1983 Sep;8(3):245–254. doi: 10.1247/csf.8.245. [DOI] [PubMed] [Google Scholar]
  28. Schiff P. B., Fant J., Horwitz S. B. Promotion of microtubule assembly in vitro by taxol. Nature. 1979 Feb 22;277(5698):665–667. doi: 10.1038/277665a0. [DOI] [PubMed] [Google Scholar]
  29. Stearns M. E., Binder L. I. Evidence that MAP-2 may be involved in pigment granule transport in squirrel fish erythrophores. Cell Motil Cytoskeleton. 1987;7(3):221–234. doi: 10.1002/cm.970070305. [DOI] [PubMed] [Google Scholar]
  30. Stearns M. E., Brown D. L. Microtubule organizing centers (MTOCs) of the alga Polytomella exert spatial control over microtubule initiation in vivo and in vitro. J Ultrastruct Res. 1981 Dec;77(3):366–378. doi: 10.1016/s0022-5320(81)80033-0. [DOI] [PubMed] [Google Scholar]
  31. Stearns M. E., Jenkins D. P., Tew K. D. Dansylated estramustine, a fluorescent probe for studies of estramustine uptake and identification of intracellular targets. Proc Natl Acad Sci U S A. 1985 Dec;82(24):8483–8487. doi: 10.1073/pnas.82.24.8483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Stearns M. E., Ochs R. L. A functional in vitro model for studies of intracellular motility in digitonin-permeabilized erythrophores. J Cell Biol. 1982 Sep;94(3):727–739. doi: 10.1083/jcb.94.3.727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Stearns M. E., Tew K. D. Antimicrotubule effects of estramustine, an antiprostatic tumor drug. Cancer Res. 1985 Aug;45(8):3891–3897. [PubMed] [Google Scholar]
  34. Stearns M. E., Tew K. D. Estramustine binds MAP-2 to inhibit microtubule assembly in vitro. J Cell Sci. 1988 Mar;89(Pt 3):331–342. doi: 10.1242/jcs.89.3.331. [DOI] [PubMed] [Google Scholar]
  35. Stearns M. E., Wang M. Polarized pigment granule transport occurs in the absence of microtubules in squirrelfish erythrophores: studies of the effects of estramustine. J Cell Sci. 1987 May;87(Pt 4):565–580. doi: 10.1242/jcs.87.4.565. [DOI] [PubMed] [Google Scholar]
  36. Tew K. D., Stearns M. E. Hormone-independent, non-alkylating mechanism of cytotoxicity for estramustine. Urol Res. 1987;15(3):155–160. doi: 10.1007/BF00254428. [DOI] [PubMed] [Google Scholar]
  37. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Vallee R. B. A taxol-dependent procedure for the isolation of microtubules and microtubule-associated proteins (MAPs). J Cell Biol. 1982 Feb;92(2):435–442. doi: 10.1083/jcb.92.2.435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Vallee R. B., Bloom G. S., Luca F. C. Differential structure and distribution of the high molecular weight brain microtubule-associated proteins, MAP-1 and MAP-2. Ann N Y Acad Sci. 1986;466:134–144. doi: 10.1111/j.1749-6632.1986.tb38391.x. [DOI] [PubMed] [Google Scholar]
  40. Wallin M., Deinum J., Fridén B. Interaction of estramustine phosphate with microtubule-associated proteins. FEBS Lett. 1985 Jan 7;179(2):289–293. doi: 10.1016/0014-5793(85)80536-6. [DOI] [PubMed] [Google Scholar]
  41. Wang M., Tew K. D., Stearns M. E. Immunofluorescent studies of the anti-microtubule effects of the anti-cancer drug estramustine. Anticancer Res. 1987 Nov-Dec;7(6):1165–1171. [PubMed] [Google Scholar]
  42. Weatherbee J. A., Sherline P., Mascardo R. N., Izant J. G., Luftig R. B., Weihing R. R. Microtubule-associated proteins of HeLa cells: heat stability of the 200,000 mol wt HeLa MAPs and detection of the presence of MAP-2 in HeLa cell extracts and cycled microtubules. J Cell Biol. 1982 Jan;92(1):155–163. doi: 10.1083/jcb.92.1.155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Weingarten M. D., Lockwood A. H., Hwo S. Y., Kirschner M. W. A protein factor essential for microtubule assembly. Proc Natl Acad Sci U S A. 1975 May;72(5):1858–1862. doi: 10.1073/pnas.72.5.1858. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Wiche G., Briones E., Koszka C., Artlieb U., Krepler R. Widespread occurrence of polypeptides related to neurotubule-associated proteins (MAP-1 and MAP-2) in non-neuronal cells and tissues. EMBO J. 1984 May;3(5):991–998. doi: 10.1002/j.1460-2075.1984.tb01918.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Wiche G., Herrmann H., Dalton J. M., Foisner R., Leichtfried F. E., Lassmann H., Koszka C., Briones E. Molecular aspects of MAP-1 and MAP-2: microheterogeneity, in vitro localization and distribution in neuronal and nonneuronal cells. Ann N Y Acad Sci. 1986;466:180–198. doi: 10.1111/j.1749-6632.1986.tb38394.x. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES