Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1988 Dec 1;107(6):2729–2736. doi: 10.1083/jcb.107.6.2729

Tau-crystallin/alpha-enolase: one gene encodes both an enzyme and a lens structural protein

PMCID: PMC2115652  PMID: 2462567

Abstract

tau-Crystallin has been a major component of the cellular lenses of species throughout vertebrate evolution, from lamprey to birds. Immunofluorescence analysis of the embryonic turtle lens, using antiserum to lamprey tau-crystallin showed that the protein is expressed throughout embryogenesis and is present at high concentrations in all parts of the lens. Partial peptide sequence for the isolated turtle protein and deduced sequences for several lamprey peptides all revealed a close similarity to the glycolytic enzyme enolase (E.C. 4.2.1.11). A full-sized cDNA for putative duck tau- crystallin was obtained and sequenced, confirming the close relationship with alpha-enolase. Southern blot analysis showed that the duck genome contains a single alpha-enolase gene, while Northern blot analysis showed that the message for tau-crystallin/alpha-enolase is present in embryonic duck lens at 25 times the abundance found in liver. tau-Crystallin possesses enolase activity, but the activity is greatly reduced, probably because of age-related posttranslational modification. It thus appears that a highly conserved, important glycolytic enzyme has been used as a structural component of lens since the start of vertebrate evolution. Apparently the enzyme has not been recruited for its catalytic activity but for some distinct structural property. tau-Crystallin/alpha-enolase is an example of a multifunctional protein playing two very different roles in evolution but encoded by a single gene.

Full Text

The Full Text of this article is available as a PDF (4.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brahma S. K., Defize L. H. Ontogeny of the 38K epsilon-polypeptide during lens development of the duck Anas platyrhynchos. Curr Eye Res. 1985 Jun;4(6):679–684. doi: 10.3109/02713688509017662. [DOI] [PubMed] [Google Scholar]
  2. Brahma S. K., McDevitt D. S., Defize L. H. Ontogeny of the 35K epsilon crystallin during Rana temporaria lens development. Curr Eye Res. 1986 Oct;5(10):739–743. doi: 10.3109/02713688609000014. [DOI] [PubMed] [Google Scholar]
  3. Carper D., Nishimura C., Shinohara T., Dietzchold B., Wistow G., Craft C., Kador P., Kinoshita J. H. Aldose reductase and p-crystallin belong to the same protein superfamily as aldehyde reductase. FEBS Lett. 1987 Aug 10;220(1):209–213. doi: 10.1016/0014-5793(87)80905-5. [DOI] [PubMed] [Google Scholar]
  4. Forss-Petter S., Danielson P., Sutcliffe J. G. Neuron-specific enolase: complete structure of rat mRNA, multiple transcriptional start sites, and evidence suggesting post-transcriptional control. J Neurosci Res. 1986;16(1):141–156. doi: 10.1002/jnr.490160114. [DOI] [PubMed] [Google Scholar]
  5. Giallongo A., Feo S., Moore R., Croce C. M., Showe L. C. Molecular cloning and nucleotide sequence of a full-length cDNA for human alpha enolase. Proc Natl Acad Sci U S A. 1986 Sep;83(18):6741–6745. doi: 10.1073/pnas.83.18.6741. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hejtmancik J. F., Beebe D. C., Ostrer H., Piatigorsky J. delta- and beta-Crystallin mRNA levels in the embryonic and posthatched chicken lens: temporal and spatial changes during development. Dev Biol. 1985 May;109(1):72–81. doi: 10.1016/0012-1606(85)90347-1. [DOI] [PubMed] [Google Scholar]
  7. Hendriks W., Mulders J. W., Bibby M. A., Slingsby C., Bloemendal H., de Jong W. W. Duck lens epsilon-crystallin and lactate dehydrogenase B4 are identical: a single-copy gene product with two distinct functions. Proc Natl Acad Sci U S A. 1988 Oct;85(19):7114–7118. doi: 10.1073/pnas.85.19.7114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Holland M. J., Holland J. P., Thill G. P., Jackson K. A. The primary structures of two yeast enolase genes. Homology between the 5' noncoding flanking regions of yeast enolase and glyceraldehyde-3-phosphate dehydrogenase genes. J Biol Chem. 1981 Feb 10;256(3):1385–1395. [PubMed] [Google Scholar]
  9. Meakin S. O., Du R. P., Tsui L. C., Breitman M. L. Gamma-crystallins of the human eye lens: expression analysis of five members of the gene family. Mol Cell Biol. 1987 Aug;7(8):2671–2679. doi: 10.1128/mcb.7.8.2671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ohrloff C., Berdjis H., Hockwin O., Bours J. Age-related changes of glyceraldehyde-3-phosphate-dehydrogenase (E.C. 1.2.1.12), 3-phosphoglyceratekinase (E.C. 2.7.2.3), phosphoglyceratemutase (E.C. 2.7.5.3), and enolase (E.C. 4.2.1.11) in bovine lenses. Ophthalmic Res. 1983;15(6):293–299. doi: 10.1159/000265275. [DOI] [PubMed] [Google Scholar]
  11. Piatigorsky J. Delta crystallins and their nucleic acids. Mol Cell Biochem. 1984;59(1-2):33–56. doi: 10.1007/BF00231304. [DOI] [PubMed] [Google Scholar]
  12. Piatigorsky J., Norman B., Jones R. E. Conservation of delta-crystallin gene structure between ducks and chickens. J Mol Evol. 1987;25(4):308–317. doi: 10.1007/BF02603115. [DOI] [PubMed] [Google Scholar]
  13. Piatigorsky J., O'Brien W. E., Norman B. L., Kalumuck K., Wistow G. J., Borras T., Nickerson J. M., Wawrousek E. F. Gene sharing by delta-crystallin and argininosuccinate lyase. Proc Natl Acad Sci U S A. 1988 May;85(10):3479–3483. doi: 10.1073/pnas.85.10.3479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Rider C. C., Taylor C. B. Enolase isoenzymes in rat tissues. Electrophoretic, chromatographic, immunological and kinetic properties. Biochim Biophys Acta. 1974 Sep 13;365(1):285–300. doi: 10.1016/0005-2795(74)90273-6. [DOI] [PubMed] [Google Scholar]
  15. Russell G. A., Dunbar B., Fothergill-Gilmore L. A. The complete amino acid sequence of chicken skeletal-muscle enolase. Biochem J. 1986 May 15;236(1):115–126. doi: 10.1042/bj2360115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Sakimura K., Kushiya E., Obinata M., Takahashi Y. Molecular cloning and the nucleotide sequence of cDNA to mRNA for non-neuronal enolase (alpha alpha enolase) of rat brain and liver. Nucleic Acids Res. 1985 Jun 25;13(12):4365–4378. doi: 10.1093/nar/13.12.4365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Segil N., Shrutkowski A., Dworkin M. B., Dworkin-Rastl E. Enolase isoenzymes in adult and developing Xenopus laevis and characterization of a cloned enolase sequence. Biochem J. 1988 Apr 1;251(1):31–39. doi: 10.1042/bj2510031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Srivastava D. K., Bernhard S. A. Metabolite transfer via enzyme-enzyme complexes. Science. 1986 Nov 28;234(4780):1081–1086. doi: 10.1126/science.3775377. [DOI] [PubMed] [Google Scholar]
  19. Stapel S. O., Zweers A., Dodemont H. J., Kan J. H., de Jong W. W. epsilon-Crystallin, a novel avian and reptilian eye lens protein. Eur J Biochem. 1985 Feb 15;147(1):129–136. doi: 10.1111/j.1432-1033.1985.tb08728.x. [DOI] [PubMed] [Google Scholar]
  20. Stapel S. O., de Jong W. W. Lamprey 48-kDa lens protein represents a novel class of crystallins. FEBS Lett. 1983 Oct 17;162(2):305–309. doi: 10.1016/0014-5793(83)80777-7. [DOI] [PubMed] [Google Scholar]
  21. Tanaka M., Sugisaki K., Nakashima K. Purification, characterization, and distribution of enolase isozymes in chicken. J Biochem. 1985 Dec;98(6):1527–1534. doi: 10.1093/oxfordjournals.jbchem.a135421. [DOI] [PubMed] [Google Scholar]
  22. WOLD F., BALLOU C. E. Studies on the enzyme enolase. I. Equilibrium studies. J Biol Chem. 1957 Jul;227(1):301–312. [PubMed] [Google Scholar]
  23. Watanabe K., Fujii Y., Nakayama K., Ohkubo H., Kuramitsu S., Kagamiyama H., Nakanishi S., Hayaishi O. Structural similarity of bovine lung prostaglandin F synthase to lens epsilon-crystallin of the European common frog. Proc Natl Acad Sci U S A. 1988 Jan;85(1):11–15. doi: 10.1073/pnas.85.1.11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Williams L. A., Ding L., Horwitz J., Piatigorsky J. tau-Crystallin from the turtle lens: purification and partial characterization. Exp Eye Res. 1985 May;40(5):741–749. doi: 10.1016/0014-4835(85)90143-5. [DOI] [PubMed] [Google Scholar]
  25. Williams L. A., Piatigorsky J., Horwitz J. Structural features of delta-crystallin of turtle lens. Biochim Biophys Acta. 1982 Oct 20;708(1):49–56. doi: 10.1016/0167-4838(82)90202-3. [DOI] [PubMed] [Google Scholar]
  26. Wistow G. J., Mulders J. W., de Jong W. W. The enzyme lactate dehydrogenase as a structural protein in avian and crocodilian lenses. Nature. 1987 Apr 9;326(6113):622–624. doi: 10.1038/326622a0. [DOI] [PubMed] [Google Scholar]
  27. Wistow G. J., Piatigorsky J. Lens crystallins: the evolution and expression of proteins for a highly specialized tissue. Annu Rev Biochem. 1988;57:479–504. doi: 10.1146/annurev.bi.57.070188.002403. [DOI] [PubMed] [Google Scholar]
  28. Wistow G., Piatigorsky J. Recruitment of enzymes as lens structural proteins. Science. 1987 Jun 19;236(4808):1554–1556. doi: 10.1126/science.3589669. [DOI] [PubMed] [Google Scholar]
  29. Zwaan J., Ikeda A. Macromolecular events during differentiation of the chicken lens. Exp Eye Res. 1968 Apr;7(2):301–311. doi: 10.1016/s0014-4835(68)80081-8. [DOI] [PubMed] [Google Scholar]
  30. van Leen R. W., van Roozendaal K. E., Lubsen N. H., Schoenmakers J. G. Differential expression of crystallin genes during development of the rat eye lens. Dev Biol. 1987 Apr;120(2):457–464. doi: 10.1016/0012-1606(87)90249-1. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES