Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1988 Dec 1;107(6):2455–2463. doi: 10.1083/jcb.107.6.2455

Developmentally regulated synthesis of a low molecular weight protein (Ch 21) by differentiating chondrocytes

PMCID: PMC2115656  PMID: 3143737

Abstract

When transferred to suspension culture on agarose-coated dishes, dedifferentiated chick embryo chondrocytes resume the chondrocyte phenotype and continue their maturation to hypertrophic chondrocytes (Castagnola, P., G. Moro, F. Descalzi Cancedda, and R. Cancedda. 1986. J. Cell Biol. 102:2310-2317). In this paper we report the identification, purification, and characterization of a low molecular weight protein, named Ch 21, expressed and secreted by in vitro differentiating chondrocytes at a late stage of development. This protein is detectable in the cells after a short pulse labeling and is directly secreted in the culture medium. The Ch 21 protein has a peculiar resistance to limited pepsin digestion; nevertheless it is not collagenous in nature as revealed by its unaltered mobility when isolated from cells grown in the presence of alpha-alpha' dipyridyl, its resistance to bacterial collagenase, and its amino acid composition. By metabolic labeling of tissue slices and by immunohistochemistry, we show that in the chick embryo tibia the Ch 21 protein first appears at the boundary of the cone of hypertrophic cartilage and in the newly formed bone between the 6 and 10 d of embryo development and localizes in calcifying hypertrophic cartilage thereafter. The Ch 21 protein synthesized by the cultured chondrocytes is closely related and possibly identical to a 21K transformation- sensitive protein associated to the cell substratum of chick embryo fibroblasts.

Full Text

The Full Text of this article is available as a PDF (2.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ambesi-Impiombato F. S., Parks L. A., Coon H. G. Culture of hormone-dependent functional epithelial cells from rat thyroids. Proc Natl Acad Sci U S A. 1980 Jun;77(6):3455–3459. doi: 10.1073/pnas.77.6.3455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Blenis J., Hawkes S. P. Characterization of a transformation-sensitive protein in the extracellular matrix of chicken embryo fibroblasts. J Biol Chem. 1984 Sep 25;259(18):11563–11570. [PubMed] [Google Scholar]
  3. Blenis J., Hawkes S. P. Transformation-sensitive protein associated with the cell substratum of chicken embryo fibroblasts. Proc Natl Acad Sci U S A. 1983 Feb;80(3):770–774. doi: 10.1073/pnas.80.3.770. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bonatti S., Cancedda F. D. Posttranslational modifications of Sindbis virus glycoproteins: electrophoretic analysis of pulse-chase-labeled infected cells. J Virol. 1982 Apr;42(1):64–70. doi: 10.1128/jvi.42.1.64-70.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Capasso O., Quarto N., Descalzi-Cancedda F., Cancedda R. The low molecular weight collagen synthesized by chick tibial chondrocytes is deposited in the extracellular matrix both in culture and in vivo. EMBO J. 1984 Apr;3(4):823–827. doi: 10.1002/j.1460-2075.1984.tb01891.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Capasso O., Tajana G., Cancedda R. Location of 64K collagen producer chondrocytes in developing chicken embryo tibiae. Mol Cell Biol. 1984 Jun;4(6):1163–1168. doi: 10.1128/mcb.4.6.1163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Castagnola P., Dozin B., Moro G., Cancedda R. Changes in the expression of collagen genes show two stages in chondrocyte differentiation in vitro. J Cell Biol. 1988 Feb;106(2):461–467. doi: 10.1083/jcb.106.2.461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Castagnola P., Moro G., Descalzi-Cancedda F., Cancedda R. Type X collagen synthesis during in vitro development of chick embryo tibial chondrocytes. J Cell Biol. 1986 Jun;102(6):2310–2317. doi: 10.1083/jcb.102.6.2310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cossu G., Warren L., Boettiger D., Holtzer H., Pacifici M. Similar glycopeptides in normal chondroblasts and in Rous sarcoma virus-transformed fibroblasts. J Biol Chem. 1982 Apr 25;257(8):4463–4468. [PubMed] [Google Scholar]
  10. Giaretti W., Moro G., Quarto R., Bruno S., Di Vinci A., Geido E., Cancedda R. Flow cytometric evaluation of cell cycle characteristics during in vitro differentiation of chick embryo chondrocytes. Cytometry. 1988 Jul;9(4):281–290. doi: 10.1002/cyto.990090403. [DOI] [PubMed] [Google Scholar]
  11. Hayashi M., Ninomiya Y., Parsons J., Hayashi K., Olsen B. R., Trelstad R. L. Differential localization of mRNAs of collagen types I and II in chick fibroblasts, chondrocytes, and corneal cells by in situ hybridization using cDNA probes. J Cell Biol. 1986 Jun;102(6):2302–2309. doi: 10.1083/jcb.102.6.2302. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Horwitz A. L., Dorfman A. The growth of cartilage cells in soft agar and liquid suspension. J Cell Biol. 1970 May;45(2):434–438. doi: 10.1083/jcb.45.2.434. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hunkapiller M. W., Lujan E., Ostrander F., Hood L. E. Isolation of microgram quantities of proteins from polyacrylamide gels for amino acid sequence analysis. Methods Enzymol. 1983;91:227–236. doi: 10.1016/s0076-6879(83)91019-4. [DOI] [PubMed] [Google Scholar]
  14. James R., Bradshaw R. A. Polypeptide growth factors. Annu Rev Biochem. 1984;53:259–292. doi: 10.1146/annurev.bi.53.070184.001355. [DOI] [PubMed] [Google Scholar]
  15. Kessler S. W. Rapid isolation of antigens from cells with a staphylococcal protein A-antibody adsorbent: parameters of the interaction of antibody-antigen complexes with protein A. J Immunol. 1975 Dec;115(6):1617–1624. [PubMed] [Google Scholar]
  16. Kielty C. M., Kwan A. P., Holmes D. F., Schor S. L., Grant M. E. Type X collagen, a product of hypertrophic chondrocytes. Biochem J. 1985 Apr 15;227(2):545–554. doi: 10.1042/bj2270545. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Konigsberg W. H., Henderson L. Removal of sodium dodecyl sulfate from proteins by ion-pair extraction. Methods Enzymol. 1983;91:254–259. doi: 10.1016/s0076-6879(83)91022-4. [DOI] [PubMed] [Google Scholar]
  18. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  19. Manduca P., Castagnola P., Cancedda R. Dimethyl sulfoxide interferes with in vitro differentiation of chick embryo endochondral chondrocytes. Dev Biol. 1988 Jan;125(1):234–236. doi: 10.1016/0012-1606(88)90078-4. [DOI] [PubMed] [Google Scholar]
  20. PFEFFERKORN E. R., HUNTER H. S. PURIFICATION AND PARTIAL CHEMICAL ANALYSIS OF SINDBIS VIRUS. Virology. 1963 Jul;20:433–445. doi: 10.1016/0042-6822(63)90092-8. [DOI] [PubMed] [Google Scholar]
  21. Schmid T. M., Linsenmayer T. F. A short chain (pro)collagen from aged endochondral chondrocytes. Biochemical characterization. J Biol Chem. 1983 Aug 10;258(15):9504–9509. [PubMed] [Google Scholar]
  22. Schmid T. M., Linsenmayer T. F. Developmental acquisition of type X collagen in the embryonic chick tibiotarsus. Dev Biol. 1985 Feb;107(2):373–381. doi: 10.1016/0012-1606(85)90319-7. [DOI] [PubMed] [Google Scholar]
  23. Shimomura Y., Suzuki F. Cultured growth cartilage cells. Clin Orthop Relat Res. 1984 Apr;(184):93–105. [PubMed] [Google Scholar]
  24. Tacchetti C., Quarto R., Nitsch L., Hartmann D. J., Cancedda R. In vitro morphogenesis of chick embryo hypertrophic cartilage. J Cell Biol. 1987 Aug;105(2):999–1006. doi: 10.1083/jcb.105.2.999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. von der Mark H., von der Mark K., Gay S. Study of differential collagen synthesis during development of the chick embryo by immunofluorescence. I. Preparation of collagen type I and type II specific antibodies and their application to early stages of the chick embryo. Dev Biol. 1976 Feb;48(2):237–249. doi: 10.1016/0012-1606(76)90088-9. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES