Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1988 Dec 1;107(6):2137–2147. doi: 10.1083/jcb.107.6.2137

Thyrotropin induces the acidification of the secretory granules of parafollicular cells by increasing the chloride conductance of the granular membrane

PMCID: PMC2115661  PMID: 2461947

Abstract

Secretory granules of sheep thyroid parafollicular cells contain serotonin, a serotonin-binding protein, and calcitonin. Parafollicular cells, isolated by affinity chromatography, were found to secrete serotonin when activated by thyrotropin (TSH) or elevated [Ca2+]e. TSH also induced a rise in [Ca2+]i. We studied the effect of these secretogogues on the pH difference (delta pH) across the membranes of the secretory granules of isolated parafollicular cells. The trapping of the weak bases, acridine orange or 3-(2,4 dinitro anilino)-3'-amino- N-methyl dipropylamine (DAMP), within the granules was used to evaluate delta pH. In contrast to lysosomes, which served as an internal control, the secretory granules of resting parafollicular cells displayed a limited and variable ability to trap either acridine orange or 3-(2,4 dinitro anilino)-3'-amino-N-methyl dipropylamine; however, when parafollicular cells were stimulated with TSH or elevated [Ca2+]e, the granules acidified. Weak base trapping was also used to evaluate the ATP-driven H+ translocation into isolated parafollicular granules. The isolated parafollicular granules did not acidify in response to addition of ATP unless their transmembrane potential was collapsed by the K+ ionophore, valinomycin. Secretory granules isolated from TSH- treated parafollicular cells had a high chloride conductance than did granules isolated similarly from untreated cells. Furthermore, ATP- driven H+ translocation into parafollicular granules isolated from TSH- stimulated parafollicular cells occurred even in the absence of valinomycin. These results demonstrate that secretogogues can regulate the internal pH of the serotonin-storing secretory granules of parafollicular cells by opening a chloride channel associated with the granule membrane. This is the first demonstration that the pH of secretory vesicles may be modified by altering the conductance of a counterion for the H+ translocating ATPase.

Full Text

The Full Text of this article is available as a PDF (3.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALLISON A. C., YOUNG M. R. UPTAKE OF DYES AND DRUGS BY LIVING CELLS IN CULTURE. Life Sci. 1964 Dec;3:1407–1414. doi: 10.1016/0024-3205(64)90082-7. [DOI] [PubMed] [Google Scholar]
  2. Anderson R. G., Falck J. R., Goldstein J. L., Brown M. S. Visualization of acidic organelles in intact cells by electron microscopy. Proc Natl Acad Sci U S A. 1984 Aug;81(15):4838–4842. doi: 10.1073/pnas.81.15.4838. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Anderson R. G., Pathak R. K. Vesicles and cisternae in the trans Golgi apparatus of human fibroblasts are acidic compartments. Cell. 1985 Mar;40(3):635–643. doi: 10.1016/0092-8674(85)90212-0. [DOI] [PubMed] [Google Scholar]
  4. Barasch J. M., Mackey H., Tamir H., Nunez E. A., Gershon M. D. Induction of a neural phenotype in a serotonergic endocrine cell derived from the neural crest. J Neurosci. 1987 Sep;7(9):2874–2883. doi: 10.1523/JNEUROSCI.07-09-02874.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Barasch J. M., Tamir H., Nunez E. A., Gershon M. D. Serotonin-storing secretory granules from thyroid parafollicular cells. J Neurosci. 1987 Dec;7(12):4017–4033. doi: 10.1523/JNEUROSCI.07-12-04017.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bastomsky C. H., McKenzie J. M. Cyclic AMP: a mediator of thyroid stimulation by thyrotropin. Am J Physiol. 1967 Sep;213(3):753–758. doi: 10.1152/ajplegacy.1967.213.3.753. [DOI] [PubMed] [Google Scholar]
  7. Berglindh T., Dibona D. R., Pace C. S., Sachs G. ATP dependence of H+ secretion. J Cell Biol. 1980 May;85(2):392–401. doi: 10.1083/jcb.85.2.392. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bernd P., Gershon M. D., Nunez E. A., Tamir H. Separation of dissociated thyroid follicular and parafollicular cells: association of serotonin binding protein with parafollicular cells. J Cell Biol. 1981 Mar;88(3):499–508. doi: 10.1083/jcb.88.3.499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Bussolati G., Pearse A. G. Immunofluorescent localization of calcitonin in the 'C' cells of pig and dog thyroid. J Endocrinol. 1967 Feb;37(2):205–209. doi: 10.1677/joe.0.0370205. [DOI] [PubMed] [Google Scholar]
  10. Carty S. E., Johnson R. G., Scarpa A. The isolation of intact adrenal chromaffin granules using isotonic Percoll density gradients. Anal Biochem. 1980 Aug;106(2):438–445. doi: 10.1016/0003-2697(80)90545-x. [DOI] [PubMed] [Google Scholar]
  11. Cuppoletti J., Sachs G. Regulation of gastric acid secretion via modulation of a chloride conductance. J Biol Chem. 1984 Dec 10;259(23):14952–14959. [PubMed] [Google Scholar]
  12. DiBona D. R., Ito S., Berglindh T., Sachs G. Cellular site of gastric acid secretion. Proc Natl Acad Sci U S A. 1979 Dec;76(12):6689–6693. doi: 10.1073/pnas.76.12.6689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Falck B., Owman C. 5-hydroxytryptamine and related amines in endocrine cell systems. Adv Pharmacol. 1968;6(Pt A):211–231. doi: 10.1016/s1054-3589(08)61175-8. [DOI] [PubMed] [Google Scholar]
  14. Gershon M. D., Kanarek D., Nunez E. A. Calcium-induced release of 5-hydroxytryptamine from thyroid lobes in vitro and accompanying ultrastructural changes in parafollicular and follicular cells. Endocrinology. 1978 Oct;103(4):1128–1143. doi: 10.1210/endo-103-4-1128. [DOI] [PubMed] [Google Scholar]
  15. Gershon M. D., Nunez E. A. Subcellular storage organelles for 5-hydroxytryptamine in parafollicular cells of drugs which deplete the amine. J Cell Biol. 1973 Mar;56(3):676–689. doi: 10.1083/jcb.56.3.676. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gershon M. D., Nunez E. A. Uptake of biogenic amines by thyroid glands. Mol Cell Endocrinol. 1976 Aug-Sep;5(3-4):169–180. doi: 10.1016/0303-7207(76)90081-2. [DOI] [PubMed] [Google Scholar]
  17. Glickman J., Croen K., Kelly S., Al-Awqati Q. Golgi membranes contain an electrogenic H+ pump in parallel to a chloride conductance. J Cell Biol. 1983 Oct;97(4):1303–1308. doi: 10.1083/jcb.97.4.1303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Gluck S., Al-Awqati Q. An electrogenic proton-translocating adenosine triphosphatase from bovine kidney medulla. J Clin Invest. 1984 Jun;73(6):1704–1710. doi: 10.1172/JCI111378. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Gluck S., Cannon C., Al-Awqati Q. Exocytosis regulates urinary acidification in turtle bladder by rapid insertion of H+ pumps into the luminal membrane. Proc Natl Acad Sci U S A. 1982 Jul;79(14):4327–4331. doi: 10.1073/pnas.79.14.4327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
  21. Hirsch P. F., Munson P. L. Thyrocalcitonin. Physiol Rev. 1969 Jul;49(3):548–622. doi: 10.1152/physrev.1969.49.3.548. [DOI] [PubMed] [Google Scholar]
  22. Jaim-Etcheverry G., Zieher L. M. Cytochemical localization of monoamine stores in sheep thyroid gland at the electron microscope level. Experientia. 1968 Jun 15;24(6):593–595. doi: 10.1007/BF02153794. [DOI] [PubMed] [Google Scholar]
  23. Johnson R. G., Carty S., Scarpa A. A model of biogenic amine accumulation into chromaffin granules and ghosts based on coupling to the electrochemical proton gradient. Fed Proc. 1982 Sep;41(11):2746–2754. [PubMed] [Google Scholar]
  24. Johnson R. G., Pfister D., Carty S. E., Scarpa A. Biological amine transport in chromaffin ghosts. Coupling to the transmembrane proton and potential gradients. J Biol Chem. 1979 Nov 10;254(21):10963–10972. [PubMed] [Google Scholar]
  25. Johnson R. G., Scarpa A. Protonmotive force and catecholamine transport in isolated chromaffin granules. J Biol Chem. 1979 May 25;254(10):3750–3760. [PubMed] [Google Scholar]
  26. Jonakait G. M., Tamir H., Rapport M. M., Gershon M. D. Detection of a soluble serotonin-binding protein in the mammalian myenteric plexus and other peripheral sites of serotonin storage. J Neurochem. 1977 Feb;28(2):277–284. doi: 10.1111/j.1471-4159.1977.tb07745.x. [DOI] [PubMed] [Google Scholar]
  27. Landry D. W., Reitman M., Cragoe E. J., Jr, Al-Awqati Q. Epithelial chloride channel. Development of inhibitory ligands. J Gen Physiol. 1987 Dec;90(6):779–798. doi: 10.1085/jgp.90.6.779. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Le Douarin N., Fontaine J., Le Lièvre C. New studies on the neural crest origin of the avian ultimobranchial glandular cells--interspecific combinations and cytochemical characterization of C cells based on the uptake of biogenic amine precursors. Histochemistry. 1974 Mar 13;38(4):297–305. doi: 10.1007/BF00496718. [DOI] [PubMed] [Google Scholar]
  29. Melander A., Sundler F. Interactions between catecholamines, 5-hydroxytryptamine and TSH on the secretion of thyroid hormone. Endocrinology. 1972 Jan;90(1):188–193. doi: 10.1210/endo-90-1-188. [DOI] [PubMed] [Google Scholar]
  30. Murphy R. F., Powers S., Cantor C. R. Endosome pH measured in single cells by dual fluorescence flow cytometry: rapid acidification of insulin to pH 6. J Cell Biol. 1984 May;98(5):1757–1762. doi: 10.1083/jcb.98.5.1757. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Njus D. The chromaffin vesicle and the energetics of storage organelles. J Auton Nerv Syst. 1983 Jan;7(1):35–40. doi: 10.1016/0165-1838(83)90067-x. [DOI] [PubMed] [Google Scholar]
  32. Nunez E. A., Gershon M. D. Cytophysiology of thyroid parafollicular cells. Int Rev Cytol. 1978;52:1–80. doi: 10.1016/s0074-7696(08)60753-6. [DOI] [PubMed] [Google Scholar]
  33. Nunez E. A., Gershon M. D. Formation of apical pseudopods by canine thyroid follicular cells: induction by thyrotropin and 5-hydroxytryptamine; antagonism by reserpine. Anat Rec. 1978 Oct;192(2):215–224. doi: 10.1002/ar.1091920202. [DOI] [PubMed] [Google Scholar]
  34. Nunez E. A., Gershon M. D. Thyrotropin-induced thyroidal release of 5-hydroxytryptamine and accompanying ultrastructural changes in parafollicular cells. Endocrinology. 1983 Jul;113(1):309–317. doi: 10.1210/endo-113-1-309. [DOI] [PubMed] [Google Scholar]
  35. Ohkuma S., Moriyama Y., Takano T. Identification and characterization of a proton pump on lysosomes by fluorescein-isothiocyanate-dextran fluorescence. Proc Natl Acad Sci U S A. 1982 May;79(9):2758–2762. doi: 10.1073/pnas.79.9.2758. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Orci L., Ravazzola M., Amherdt M., Madsen O., Perrelet A., Vassalli J. D., Anderson R. G. Conversion of proinsulin to insulin occurs coordinately with acidification of maturing secretory vesicles. J Cell Biol. 1986 Dec;103(6 Pt 1):2273–2281. doi: 10.1083/jcb.103.6.2273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Pazoles C. J., Creutz C. E., Ramu A., Pollard H. B. Permeant anion activation of MgATPase activity in chromaffin granules. Evidence for direct coupling of proton and anion transport. J Biol Chem. 1980 Aug 25;255(16):7863–7869. [PubMed] [Google Scholar]
  38. Pearse A. G. Common cytochemical properties of cells producing polypeptide hormones, with particular reference to calcitonin and the thyroid C cells. Vet Rec. 1966 Nov 19;79(21):587–590. doi: 10.1136/vr.79.21.587. [DOI] [PubMed] [Google Scholar]
  39. Polak J. M., Pearse A. G., Le Lièvre C., Fontaine J., Le Douarin N. M. Immunocytochemical confirmation of the neural crest origin of avian calcitonin-producing cells. Histochemistry. 1974;40(3):209–214. doi: 10.1007/BF00501955. [DOI] [PubMed] [Google Scholar]
  40. Reinhard J. F., Jr, Moskowitz M. A., Sved A. F., Fernstrom J. D. A simple, sensitive and reliable assay for serotonin and 5-HIAA in brain tissue using liquid chromatography with electrochemical detection. Life Sci. 1980 Sep 15;27(11):905–911. doi: 10.1016/0024-3205(80)90099-5. [DOI] [PubMed] [Google Scholar]
  41. Russell J. T., Holz R. W. Measurement of delta pH and membrane potential in isolated neurosecretory vesicles from bovine neurohypophyses. J Biol Chem. 1981 Jun 25;256(12):5950–5953. [PubMed] [Google Scholar]
  42. Schneider D. L. ATP-dependent acidification of intact and disrupted lysosomes. Evidence for an ATP-driven proton pump. J Biol Chem. 1981 Apr 25;256(8):3858–3864. [PubMed] [Google Scholar]
  43. Schoumacher R. A., Shoemaker R. L., Halm D. R., Tallant E. A., Wallace R. W., Frizzell R. A. Phosphorylation fails to activate chloride channels from cystic fibrosis airway cells. Nature. 1987 Dec 24;330(6150):752–754. doi: 10.1038/330752a0. [DOI] [PubMed] [Google Scholar]
  44. Tamir H., Gershon M. D. Intracellular proteins that bind serotonin in neurons, paraneurons and platelets. J Physiol (Paris) 1981;77(2-3):283–286. [PubMed] [Google Scholar]
  45. Tamir H., Klein A., Rapport M. M. Serotonin binding protein:enhancement of binding by Fe2+ and inhibition of binding by drugs. J Neurochem. 1976 May;26(5):871–878. doi: 10.1111/j.1471-4159.1976.tb06467.x. [DOI] [PubMed] [Google Scholar]
  46. Thomas J. A., Buchsbaum R. N., Zimniak A., Racker E. Intracellular pH measurements in Ehrlich ascites tumor cells utilizing spectroscopic probes generated in situ. Biochemistry. 1979 May 29;18(11):2210–2218. doi: 10.1021/bi00578a012. [DOI] [PubMed] [Google Scholar]
  47. Yamashiro D. J., Maxfield F. R. Acidification of endocytic compartments and the intracellular pathways of ligands and receptors. J Cell Biochem. 1984;26(4):231–246. doi: 10.1002/jcb.240260404. [DOI] [PubMed] [Google Scholar]
  48. Yamashiro D. J., Tycko B., Fluss S. R., Maxfield F. R. Segregation of transferrin to a mildly acidic (pH 6.5) para-Golgi compartment in the recycling pathway. Cell. 1984 Jul;37(3):789–800. doi: 10.1016/0092-8674(84)90414-8. [DOI] [PubMed] [Google Scholar]
  49. van Adelsberg J., Al-Awqati Q. Regulation of cell pH by Ca+2-mediated exocytotic insertion of H+-ATPases. J Cell Biol. 1986 May;102(5):1638–1645. doi: 10.1083/jcb.102.5.1638. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES