Abstract
An extracellular matrix molecule has been purified from sea urchin (Lytechinus variegatus) embryos. Based on its functional properties and on its origin, this glycoprotein has been given the name "echinonectin." Echinonectin is a 230-kD dimer with a unique bow tie shape when viewed by electron microscopy. The molecule is 12 nm long, 8 nm wide at the ends, and narrows to approximately 4 nm at the middle. It is composed of two 116-kD U-shaped subunits that are attached to each other by disulfide bonds at their respective apices. Polyclonal antibodies were used to localize echinonectin in paraffin-embedded, sectioned specimens by indirect immunofluorescence. The protein is stored in vesicles or granules in unfertilized eggs, is released after fertilization, and later becomes localized on the apical surface of ectoderm cells in the embryo. When used as a substrate in a quantitative in vitro assay, echinonectin is highly effective as an adhesive substrate for dissociated embryonic cells. Because of the quantity, pattern of appearance, distribution, and adhesive characteristics of this protein, we suggest that echinonectin serves as a substrate adhesion molecule during sea urchin development.
Full Text
The Full Text of this article is available as a PDF (2.7 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alliegro M. C., McClay D. R. Storage and mobilization of extracellular matrix proteins during sea urchin development. Dev Biol. 1988 Jan;125(1):208–216. doi: 10.1016/0012-1606(88)90074-7. [DOI] [PubMed] [Google Scholar]
- Cameron R. A., Holland N. D. Demonstration of the granular layer and the fate of the hyaline layer during the development of a sea urchin (Lytechinus variegatus). Cell Tissue Res. 1985;239(2):455–458. doi: 10.1007/BF00218028. [DOI] [PubMed] [Google Scholar]
- Citkowitz E. The hyaline layer: its isolation and role in echinoderm development. Dev Biol. 1971 Mar;24(3):348–362. doi: 10.1016/0012-1606(71)90085-6. [DOI] [PubMed] [Google Scholar]
- Cleveland D. W., Fischer S. G., Kirschner M. W., Laemmli U. K. Peptide mapping by limited proteolysis in sodium dodecyl sulfate and analysis by gel electrophoresis. J Biol Chem. 1977 Feb 10;252(3):1102–1106. [PubMed] [Google Scholar]
- DAN K. Cyto-embryology of echinoderms and amphibia. Int Rev Cytol. 1960;9:321–367. doi: 10.1016/s0074-7696(08)62751-5. [DOI] [PubMed] [Google Scholar]
- DeSimone D. W., Spiegel E., Spiegel M. The biochemical identification of fibronectin in the sea urchin embryo. Biochem Biophys Res Commun. 1985 Nov 27;133(1):183–188. doi: 10.1016/0006-291x(85)91858-3. [DOI] [PubMed] [Google Scholar]
- Dorsey T. E., McDonald P. W., Roels O. A. A heated Biuret-Folin protein assay which gives equal absorbance with different proteins. Anal Biochem. 1977 Mar;78(1):156–164. doi: 10.1016/0003-2697(77)90019-7. [DOI] [PubMed] [Google Scholar]
- Edelman G. M. Cell adhesion and the molecular processes of morphogenesis. Annu Rev Biochem. 1985;54:135–169. doi: 10.1146/annurev.bi.54.070185.001031. [DOI] [PubMed] [Google Scholar]
- Erickson H. P., Carrell N. A. Fibronectin in extended and compact conformations. Electron microscopy and sedimentation analysis. J Biol Chem. 1983 Dec 10;258(23):14539–14544. [PubMed] [Google Scholar]
- Fink R. D., McClay D. R. Three cell recognition changes accompany the ingression of sea urchin primary mesenchyme cells. Dev Biol. 1985 Jan;107(1):66–74. doi: 10.1016/0012-1606(85)90376-8. [DOI] [PubMed] [Google Scholar]
- Hall H. G., Vacquier V. D. The apical lamina of the sea urchin embryo: major glycoproteins associated with the hyaline layer. Dev Biol. 1982 Jan;89(1):168–178. doi: 10.1016/0012-1606(82)90305-0. [DOI] [PubMed] [Google Scholar]
- Hedrick J. L., Smith A. J. Size and charge isomer separation and estimation of molecular weights of proteins by disc gel electrophoresis. Arch Biochem Biophys. 1968 Jul;126(1):155–164. doi: 10.1016/0003-9861(68)90569-9. [DOI] [PubMed] [Google Scholar]
- Hynes R. Molecular biology of fibronectin. Annu Rev Cell Biol. 1985;1:67–90. doi: 10.1146/annurev.cb.01.110185.000435. [DOI] [PubMed] [Google Scholar]
- Katow H., Yamada K. M., Solursh M. Occurrence of fibronectin on the primary mesenchyme cell surface during migration in the sea urchin embryo. Differentiation. 1982;22(2):120–124. doi: 10.1111/j.1432-0436.1982.tb01235.x. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- McCarthy R. A., Spiegel M. Protein composition of the hyaline layer of sea urchin embryos and reaggregating cells. Cell Differ. 1983 Oct;13(2):93–102. doi: 10.1016/0045-6039(83)90101-x. [DOI] [PubMed] [Google Scholar]
- McClay D. R., Ettensohn C. A. Cell adhesion in morphogenesis. Annu Rev Cell Biol. 1987;3:319–345. doi: 10.1146/annurev.cb.03.110187.001535. [DOI] [PubMed] [Google Scholar]
- McClay D. R., Fink R. D. Sea urchin hyalin: appearance and function in development. Dev Biol. 1982 Aug;92(2):285–293. doi: 10.1016/0012-1606(82)90175-0. [DOI] [PubMed] [Google Scholar]
- McClay D. R., Wessel G. M., Marchase R. B. Intercellular recognition: quantitation of initial binding events. Proc Natl Acad Sci U S A. 1981 Aug;78(8):4975–4979. doi: 10.1073/pnas.78.8.4975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- O'Farrell P. H. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975 May 25;250(10):4007–4021. [PMC free article] [PubMed] [Google Scholar]
- Olmsted J. B. Affinity purification of antibodies from diazotized paper blots of heterogeneous protein samples. J Biol Chem. 1981 Dec 10;256(23):11955–11957. [PubMed] [Google Scholar]
- Pytela R., Pierschbacher M. D., Argraves S., Suzuki S., Ruoslahti E. Arginine-glycine-aspartic acid adhesion receptors. Methods Enzymol. 1987;144:475–489. doi: 10.1016/0076-6879(87)44196-7. [DOI] [PubMed] [Google Scholar]
- Ruoslahti E., Hayman E. G., Pierschbacher M., Engvall E. Fibronectin: purification, immunochemical properties, and biological activities. Methods Enzymol. 1982;82(Pt A):803–831. doi: 10.1016/0076-6879(82)82103-4. [DOI] [PubMed] [Google Scholar]
- Sedmak J. J., Grossberg S. E. A rapid, sensitive, and versatile assay for protein using Coomassie brilliant blue G250. Anal Biochem. 1977 May 1;79(1-2):544–552. doi: 10.1016/0003-2697(77)90428-6. [DOI] [PubMed] [Google Scholar]
- Spiegel E., Burger M. M., Spiegel M. Fibronectin and laminin in the extracellular matrix and basement membrane of sea urchin embryos. Exp Cell Res. 1983 Mar;144(1):47–55. doi: 10.1016/0014-4827(83)90440-8. [DOI] [PubMed] [Google Scholar]
- Spiegel E., Spiegel M. The hyaline layer is a collagen-containing extracellular matrix in sea urchin embryos and reaggregating cells. Exp Cell Res. 1979 Oct 15;123(2):434–441. doi: 10.1016/0014-4827(79)90495-6. [DOI] [PubMed] [Google Scholar]
- Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wessel G. M., Marchase R. B., McClay D. R. Ontogeny of the basal lamina in the sea urchin embryo. Dev Biol. 1984 May;103(1):235–245. doi: 10.1016/0012-1606(84)90025-3. [DOI] [PubMed] [Google Scholar]
- Wessel G. M., McClay D. R. Gastrulation in the sea urchin embryo requires the deposition of crosslinked collagen within the extracellular matrix. Dev Biol. 1987 May;121(1):149–165. doi: 10.1016/0012-1606(87)90148-5. [DOI] [PubMed] [Google Scholar]
- Woodward M. P., Young W. W., Jr, Bloodgood R. A. Detection of monoclonal antibodies specific for carbohydrate epitopes using periodate oxidation. J Immunol Methods. 1985 Apr 8;78(1):143–153. doi: 10.1016/0022-1759(85)90337-0. [DOI] [PubMed] [Google Scholar]