Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1988 Dec 1;107(6):2329–2340. doi: 10.1083/jcb.107.6.2329

Functional mapping of cytotactin: proteolytic fragments active in cell- substrate adhesion

PMCID: PMC2115667  PMID: 2461950

Abstract

Cytotactin is an extracellular matrix glycoprotein with a restricted distribution during development. In electron microscopic images, it appears as a hexabrachion with six arms extending from a central core. Cytotactin binds to other extracellular matrix proteins including a chondroitin sulfate proteoglycan (CTB proteoglycan) and fibronectin. Although cytotactin binds to a variety of cells including fibroblasts and neurons, in some cases it causes cells in culture to round up and it inhibits their migration. To relate these various effects of cytotactin on cell behavior to its binding regions, we have examined its ability to support cell-substrate adhesion and have mapped its cell- binding function onto its structure. In a cell-substrate adhesion assay, fibroblasts bound to cytotactin but remained round. In contrast, they both attached and spread on fibronectin. Neither neurons nor glia bound to cytotactin in this assay. In an assay in which cell-substrate contact was initiated by centrifugation, however, neurons and glia bound well to cytotactin; this binding was blocked by specific anti- cytotactin antibodies. The results suggest that neurons and glia can bind to cytotactin-coated substrates and that these cells, like fibroblasts, possess cell surface ligands for cytotactin. After applying methods of limited proteolysis and fractionation, these assays were used to map the binding functions of cytotactin onto its structure. Fragments produced by limited proteolysis were fractionated into two major pools: one (fraction I) contained disulfide-linked oligomers of a 100-kD fragment and two minor related fragments, and the second (fraction II) contained monomeric 90- and 65-kD fragments. The 90- and 65-kD fragments in fraction II were closely related to each other and were structurally and immunologically distinct from the fragments in fraction I. Only components in fraction I were recognized by mAb M1, which binds to an epitope located in the proximal portion of the arms of the hexabrachion and by a polyclonal antibody prepared against a 75-kD CNBr fragment of intact cytotactin. A mAb (1D8) and a polyclonal antibody prepared against a 35-kD CNBr fragment of cytotactin only recognized components present in fraction II. In cell- binding experiments, fibroblasts, neurons, and glia each adhered to substrates coated with fraction II, but did not adhere to substrates coated with fraction I. Fab fragments of the antibody to the 35-kD CNBr fragment strongly inhibited the binding of cells to cytotactin, supporting the conclusion that fraction II contains a cell-binding region. In addition, Fab fragments of this antibody inhibited the binding of cytotactin to CTB pr

Full Text

The Full Text of this article is available as a PDF (2.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brackenbury R., Rutishauser U., Edelman G. M. Distinct calcium-independent and calcium-dependent adhesion systems of chicken embryo cells. Proc Natl Acad Sci U S A. 1981 Jan;78(1):387–391. doi: 10.1073/pnas.78.1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brackenbury R., Thiery J. P., Rutishauser U., Edelman G. M. Adhesion among neural cells of the chick embryo. I. An immunological assay for molecules involved in cell-cell binding. J Biol Chem. 1977 Oct 10;252(19):6835–6840. [PubMed] [Google Scholar]
  3. Chiquet-Ehrismann R., Kalla P., Pearson C. A., Beck K., Chiquet M. Tenascin interferes with fibronectin action. Cell. 1988 May 6;53(3):383–390. doi: 10.1016/0092-8674(88)90158-4. [DOI] [PubMed] [Google Scholar]
  4. Chiquet-Ehrismann R., Mackie E. J., Pearson C. A., Sakakura T. Tenascin: an extracellular matrix protein involved in tissue interactions during fetal development and oncogenesis. Cell. 1986 Oct 10;47(1):131–139. doi: 10.1016/0092-8674(86)90374-0. [DOI] [PubMed] [Google Scholar]
  5. Chiquet M., Fambrough D. M. Chick myotendinous antigen. II. A novel extracellular glycoprotein complex consisting of large disulfide-linked subunits. J Cell Biol. 1984 Jun;98(6):1937–1946. doi: 10.1083/jcb.98.6.1937. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chuong C. M., Crossin K. L., Edelman G. M. Sequential expression and differential function of multiple adhesion molecules during the formation of cerebellar cortical layers. J Cell Biol. 1987 Feb;104(2):331–342. doi: 10.1083/jcb.104.2.331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Couchman J. R., Hök M., Rees D. A., Timpl R. Adhesion, growth, and matrix production by fibroblasts on laminin substrates. J Cell Biol. 1983 Jan;96(1):177–183. doi: 10.1083/jcb.96.1.177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Crossin K. L., Hoffman S., Grumet M., Thiery J. P., Edelman G. M. Site-restricted expression of cytotactin during development of the chicken embryo. J Cell Biol. 1986 May;102(5):1917–1930. doi: 10.1083/jcb.102.5.1917. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Decker C., Greggs R., Duggan K., Stubbs J., Horwitz A. Adhesive multiplicity in the interaction of embryonic fibroblasts and myoblasts with extracellular matrices. J Cell Biol. 1984 Oct;99(4 Pt 1):1398–1404. doi: 10.1083/jcb.99.4.1398. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Edelman G. M. Cell adhesion molecules in the regulation of animal form and tissue pattern. Annu Rev Cell Biol. 1986;2:81–116. doi: 10.1146/annurev.cb.02.110186.000501. [DOI] [PubMed] [Google Scholar]
  11. Eisenbarth G. S., Rankin R. B., 3rd, Haynes B. F., Fauci A. S. A visual assay to monitor purification of cell surface antigens reacting with monoclonal antibodies. J Immunol Methods. 1980;39(4):387–392. doi: 10.1016/0022-1759(80)90239-2. [DOI] [PubMed] [Google Scholar]
  12. Elder J. H., Pickett R. A., 2nd, Hampton J., Lerner R. A. Radioiodination of proteins in single polyacrylamide gel slices. Tryptic peptide analysis of all the major members of complex multicomponent systems using microgram quantities of total protein. J Biol Chem. 1977 Sep 25;252(18):6510–6515. [PubMed] [Google Scholar]
  13. Erickson H. P., Carrell N. A. Fibronectin in extended and compact conformations. Electron microscopy and sedimentation analysis. J Biol Chem. 1983 Dec 10;258(23):14539–14544. [PubMed] [Google Scholar]
  14. Erickson H. P., Inglesias J. L. A six-armed oligomer isolated from cell surface fibronectin preparations. Nature. 1984 Sep 20;311(5983):267–269. doi: 10.1038/311267a0. [DOI] [PubMed] [Google Scholar]
  15. Erickson H. P., Taylor H. C. Hexabrachion proteins in embryonic chicken tissues and human tumors. J Cell Biol. 1987 Sep;105(3):1387–1394. doi: 10.1083/jcb.105.3.1387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Friedlander D. R., Grumet M., Edelman G. M. Nerve growth factor enhances expression of neuron-glia cell adhesion molecule in PC12 cells. J Cell Biol. 1986 Feb;102(2):413–419. doi: 10.1083/jcb.102.2.413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Grinnell F. Cellular adhesiveness and extracellular substrata. Int Rev Cytol. 1978;53:65–144. doi: 10.1016/s0074-7696(08)62241-x. [DOI] [PubMed] [Google Scholar]
  18. Grinnell F., Hays D. G., Minter D. Cell adhesion and spreading factor. Partial purification and properties. Exp Cell Res. 1977 Nov;110(1):175–190. doi: 10.1016/0014-4827(77)90284-1. [DOI] [PubMed] [Google Scholar]
  19. Grumet M., Edelman G. M. Heterotypic binding between neuronal membrane vesicles and glial cells is mediated by a specific cell adhesion molecule. J Cell Biol. 1984 May;98(5):1746–1756. doi: 10.1083/jcb.98.5.1746. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Grumet M., Hoffman S., Crossin K. L., Edelman G. M. Cytotactin, an extracellular matrix protein of neural and non-neural tissues that mediates glia-neuron interaction. Proc Natl Acad Sci U S A. 1985 Dec;82(23):8075–8079. doi: 10.1073/pnas.82.23.8075. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hoffman S., Crossin K. L., Edelman G. M. Molecular forms, binding functions, and developmental expression patterns of cytotactin and cytotactin-binding proteoglycan, an interactive pair of extracellular matrix molecules. J Cell Biol. 1988 Feb;106(2):519–532. doi: 10.1083/jcb.106.2.519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Hoffman S., Edelman G. M. A proteoglycan with HNK-1 antigenic determinants is a neuron-associated ligand for cytotactin. Proc Natl Acad Sci U S A. 1987 Apr;84(8):2523–2527. doi: 10.1073/pnas.84.8.2523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Hynes R. O. Integrins: a family of cell surface receptors. Cell. 1987 Feb 27;48(4):549–554. doi: 10.1016/0092-8674(87)90233-9. [DOI] [PubMed] [Google Scholar]
  24. Jones F. S., Burgoon M. P., Hoffman S., Crossin K. L., Cunningham B. A., Edelman G. M. A cDNA clone for cytotactin contains sequences similar to epidermal growth factor-like repeats and segments of fibronectin and fibrinogen. Proc Natl Acad Sci U S A. 1988 Apr;85(7):2186–2190. doi: 10.1073/pnas.85.7.2186. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Koda J. E., Rapraeger A., Bernfield M. Heparan sulfate proteoglycans from mouse mammary epithelial cells. Cell surface proteoglycan as a receptor for interstitial collagens. J Biol Chem. 1985 Jul 5;260(13):8157–8162. [PubMed] [Google Scholar]
  26. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  27. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  28. Laterra J., Silbert J. E., Culp L. A. Cell surface heparan sulfate mediates some adhesive responses to glycosaminoglycan-binding matrices, including fibronectin. J Cell Biol. 1983 Jan;96(1):112–123. doi: 10.1083/jcb.96.1.112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Mackie E. J., Thesleff I., Chiquet-Ehrismann R. Tenascin is associated with chondrogenic and osteogenic differentiation in vivo and promotes chondrogenesis in vitro. J Cell Biol. 1987 Dec;105(6 Pt 1):2569–2579. doi: 10.1083/jcb.105.6.2569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. McClay D. R., Fink R. D. Sea urchin hyalin: appearance and function in development. Dev Biol. 1982 Aug;92(2):285–293. doi: 10.1016/0012-1606(82)90175-0. [DOI] [PubMed] [Google Scholar]
  31. Morrissey J. H. Silver stain for proteins in polyacrylamide gels: a modified procedure with enhanced uniform sensitivity. Anal Biochem. 1981 Nov 1;117(2):307–310. doi: 10.1016/0003-2697(81)90783-1. [DOI] [PubMed] [Google Scholar]
  32. Nagata K., Humphries M. J., Olden K., Yamada K. M. Collagen can modulate cell interactions with fibronectin. J Cell Biol. 1985 Aug;101(2):386–394. doi: 10.1083/jcb.101.2.386. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Rogers S. L., McCarthy J. B., Palm S. L., Furcht L. T., Letourneau P. C. Neuron-specific interactions with two neurite-promoting fragments of fibronectin. J Neurosci. 1985 Feb;5(2):369–378. doi: 10.1523/JNEUROSCI.05-02-00369.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Rosenberg L. C., Choi H. U., Poole A. R., Lewandowska K., Culp L. A. Biological roles of dermatan sulphate proteoglycans. Ciba Found Symp. 1986;124:47–68. doi: 10.1002/9780470513385.ch4. [DOI] [PubMed] [Google Scholar]
  35. Ruoslahti E., Bourdon M., Krusius T. Molecular cloning of proteoglycan core proteins. Ciba Found Symp. 1986;124:260–271. doi: 10.1002/9780470513385.ch14. [DOI] [PubMed] [Google Scholar]
  36. Ruoslahti E., Pierschbacher M. D. New perspectives in cell adhesion: RGD and integrins. Science. 1987 Oct 23;238(4826):491–497. doi: 10.1126/science.2821619. [DOI] [PubMed] [Google Scholar]
  37. Saunders S., Bernfield M. Cell surface proteoglycan binds mouse mammary epithelial cells to fibronectin and behaves as a receptor for interstitial matrix. J Cell Biol. 1988 Feb;106(2):423–430. doi: 10.1083/jcb.106.2.423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Tan S. S., Crossin K. L., Hoffman S., Edelman G. M. Asymmetric expression in somites of cytotactin and its proteoglycan ligand is correlated with neural crest cell distribution. Proc Natl Acad Sci U S A. 1987 Nov;84(22):7977–7981. doi: 10.1073/pnas.84.22.7977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Vaughan L., Huber S., Chiquet M., Winterhalter K. H. A major, six-armed glycoprotein from embryonic cartilage. EMBO J. 1987 Feb;6(2):349–353. doi: 10.1002/j.1460-2075.1987.tb04761.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Woods A., Couchman J. R., Johansson S., Hök M. Adhesion and cytoskeletal organisation of fibroblasts in response to fibronectin fragments. EMBO J. 1986 Apr;5(4):665–670. doi: 10.1002/j.1460-2075.1986.tb04265.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Yamada K. M. Cell surface interactions with extracellular materials. Annu Rev Biochem. 1983;52:761–799. doi: 10.1146/annurev.bi.52.070183.003553. [DOI] [PubMed] [Google Scholar]
  43. Yamada K. M., Yamada S. S., Pastan I. The major cell surface glycoprotein of chick embryo fibroblasts is an agglutinin. Proc Natl Acad Sci U S A. 1975 Aug;72(8):3158–3162. doi: 10.1073/pnas.72.8.3158. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES