Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1988 Dec 1;107(6):2669–2678. doi: 10.1083/jcb.107.6.2669

Identification and localization of a novel, cytoskeletal, centrosome- associated protein in PtK2 cells

PMCID: PMC2115668  PMID: 3060471

Abstract

Antisera raised against centrin (Salisbury, J.L., A.T. Baron, B. Surek, and M. Melkonian. 1984. J. Cell Biol. 99:962-970) have been used, here, to identify a centrosome-associated protein with an Mr of 165,000. Immunocytochemistry indicates that this protein is a component of pericentriolar satellites, basal feet, and pericentriolar matrix of interphase cells. These components of pericentriolar material are, in part, composed of 3-8-nm-diam filaments, which interconnect to form a three-dimensional pericentriolar lattice. We conclude that the 165,000- Mr protein is immunologically related to centrin, and that it is a component of a novel centrosome-associated cytoskeletal filament system. Microtubule organizing centers such as the flagellar apparatus of algal cells, spindle pole body of yeast cells, and centrosome of mammalian cells are homologous structures essential for cytoplasmic organization and cellular proliferation. Molecular cloning studies have recently shown that the cell cycle gene product CDC31, required for spindle pole body duplication, shares 50% sequence homology with centrin (Huang, B., A. Mengersen, and V.D. Lee. 1988. J. Cell Biol. 107:133-140). The evolutionary conservation of centrin-related sequences and immunologic epitopes to microtubule organizing centers of divergent phylogeny suggests that a functional attribute(s) may have been conserved as well. Elucidation of a common thread between these related molecules may be fundamental to our understanding of cell structure and function.

Full Text

The Full Text of this article is available as a PDF (4.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albrecht-Buehler G. Phagokinetic tracks of 3T3 cells: parallels between the orientation of track segments and of cellular structures which contain actin or tubulin. Cell. 1977 Oct;12(2):333–339. doi: 10.1016/0092-8674(77)90109-x. [DOI] [PubMed] [Google Scholar]
  2. Berns M. W., Rattner J. B., Brenner S., Meredith S. The role of the centriolar region in animal cell mitosis. A laser microbeam study. J Cell Biol. 1977 Feb;72(2):351–367. doi: 10.1083/jcb.72.2.351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Berns M. W., Richardson S. M. Continuation of mitosis after selective laser microbeam destruction of the centriolar region. J Cell Biol. 1977 Dec;75(3):977–982. doi: 10.1083/jcb.75.3.977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brinkley B. R. Microtubule organizing centers. Annu Rev Cell Biol. 1985;1:145–172. doi: 10.1146/annurev.cb.01.110185.001045. [DOI] [PubMed] [Google Scholar]
  5. Cande W. Z. Nucleotide requirements for anaphase chromosome movements in permeabilized mitotic cells: anaphase B but not anaphase A requires ATP. Cell. 1982 Jan;28(1):15–22. doi: 10.1016/0092-8674(82)90370-1. [DOI] [PubMed] [Google Scholar]
  6. Coss R. A. Mitosis in Chlamydomonas reinhardtii basal bodies and the mitotic apparatus. J Cell Biol. 1974 Oct;63(1):325–329. doi: 10.1083/jcb.63.1.325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gotlieb A. I., May L. M., Subrahmanyan L., Kalnins V. I. Distribution of microtubule organizing centers in migrating sheets of endothelial cells. J Cell Biol. 1981 Nov;91(2 Pt 1):589–594. doi: 10.1083/jcb.91.2.589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gould R. R., Borisy G. G. The pericentriolar material in Chinese hamster ovary cells nucleates microtubule formation. J Cell Biol. 1977 Jun;73(3):601–615. doi: 10.1083/jcb.73.3.601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Huang B., Mengersen A., Lee V. D. Molecular cloning of cDNA for caltractin, a basal body-associated Ca2+-binding protein: homology in its protein sequence with calmodulin and the yeast CDC31 gene product. J Cell Biol. 1988 Jul;107(1):133–140. doi: 10.1083/jcb.107.1.133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Jensen C. G., Jensen L. C., Rieder C. L. The occurrence and structure of primary cilia in a subline of Potorous tridactylus. Exp Cell Res. 1979 Oct 15;123(2):444–449. doi: 10.1016/0014-4827(79)90497-x. [DOI] [PubMed] [Google Scholar]
  11. Johnson U. G., Porter K. R. Fine structure of cell division in Chlamydomonas reinhardi. Basal bodies and microtubules. J Cell Biol. 1968 Aug;38(2):403–425. doi: 10.1083/jcb.38.2.403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kuriyama R., Borisy G. G. Centriole cycle in Chinese hamster ovary cells as determined by whole-mount electron microscopy. J Cell Biol. 1981 Dec;91(3 Pt 1):814–821. doi: 10.1083/jcb.91.3.814. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kuriyama R., Borisy G. G. Microtubule-nucleating activity of centrosomes in Chinese hamster ovary cells is independent of the centriole cycle but coupled to the mitotic cycle. J Cell Biol. 1981 Dec;91(3 Pt 1):822–826. doi: 10.1083/jcb.91.3.822. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kuriyama R., Dasgupta S., Borisy G. G. Independence of centriole formation and initiation of DNA synthesis in Chinese hamster ovary cells. Cell Motil Cytoskeleton. 1986;6(4):355–362. doi: 10.1002/cm.970060402. [DOI] [PubMed] [Google Scholar]
  15. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  16. Mazia D. The chromosome cycle and the centrosome cycle in the mitotic cycle. Int Rev Cytol. 1987;100:49–92. doi: 10.1016/s0074-7696(08)61698-8. [DOI] [PubMed] [Google Scholar]
  17. McDonald K. Osmium ferricyanide fixation improves microfilament preservation and membrane visualization in a variety of animal cell types. J Ultrastruct Res. 1984 Feb;86(2):107–118. doi: 10.1016/s0022-5320(84)80051-9. [DOI] [PubMed] [Google Scholar]
  18. McFadden G. I., Schulze D., Surek B., Salisbury J. L., Melkonian M. Basal body reorientation mediated by a Ca2+-modulated contractile protein. J Cell Biol. 1987 Aug;105(2):903–912. doi: 10.1083/jcb.105.2.903. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Nemere I., Kupfer A., Singer S. J. Reorientation of the Golgi apparatus and the microtubule-organizing center inside macrophages subjected to a chemotactic gradient. Cell Motil. 1985;5(1):17–29. doi: 10.1002/cm.970050103. [DOI] [PubMed] [Google Scholar]
  20. Pickett-Heaps J., Spurck T., Tippit D. Chromosome motion and the spindle matrix. J Cell Biol. 1984 Jul;99(1 Pt 2):137s–143s. doi: 10.1083/jcb.99.1.137s. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. RODRIGUEZ J., DEINHARDT F. Preparation of a semipermanent mounting medium for fluorescent antibody studies. Virology. 1960 Oct;12:316–317. doi: 10.1016/0042-6822(60)90205-1. [DOI] [PubMed] [Google Scholar]
  22. Rattner J. B., Phillips S. G. Independence of centriole formation and DNA synthesis. J Cell Biol. 1973 May;57(2):359–372. doi: 10.1083/jcb.57.2.359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Rieder C. L., Borisy G. G. The attachment of kinetochores to the pro-metaphase spindle in PtK1 cells. Recovery from low temperature treatment. Chromosoma. 1981;82(5):693–716. doi: 10.1007/BF00285776. [DOI] [PubMed] [Google Scholar]
  24. Rieder C. L., Jensen C. G., Jensen L. C. The resorption of primary cilia during mitosis in a vertebrate (PtK1) cell line. J Ultrastruct Res. 1979 Aug;68(2):173–185. doi: 10.1016/s0022-5320(79)90152-7. [DOI] [PubMed] [Google Scholar]
  25. Ringo D. L. Flagellar motion and fine structure of the flagellar apparatus in Chlamydomonas. J Cell Biol. 1967 Jun;33(3):543–571. doi: 10.1083/jcb.33.3.543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Robbins E., Jentzsch G., Micali A. The centriole cycle in synchronized HeLa cells. J Cell Biol. 1968 Feb;36(2):329–339. doi: 10.1083/jcb.36.2.329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Salisbury J. L., Baron A. T., Coling D. E., Martindale V. E., Sanders M. A. Calcium-modulated contractile proteins associated with the eucaryotic centrosome. Cell Motil Cytoskeleton. 1986;6(2):193–197. doi: 10.1002/cm.970060218. [DOI] [PubMed] [Google Scholar]
  28. Salisbury J. L., Baron A., Surek B., Melkonian M. Striated flagellar roots: isolation and partial characterization of a calcium-modulated contractile organelle. J Cell Biol. 1984 Sep;99(3):962–970. doi: 10.1083/jcb.99.3.962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Salisbury J. L., Floyd G. L. Calcium-induced contraction of the rhizoplast of a quadriflagellate green alga. Science. 1978 Dec 1;202(4371):975–977. doi: 10.1126/science.202.4371.975. [DOI] [PubMed] [Google Scholar]
  30. Salisbury J. L., Sanders M. A., Harpst L. Flagellar root contraction and nuclear movement during flagellar regeneration in Chlamydomonas reinhardtii. J Cell Biol. 1987 Oct;105(4):1799–1805. doi: 10.1083/jcb.105.4.1799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Salisbury J. L. The lost neuromotor apparatus of Chlamydomonas: rediscovered. J Protozool. 1988 Nov;35(4):574–577. doi: 10.1111/j.1550-7408.1988.tb06128.x. [DOI] [PubMed] [Google Scholar]
  32. Telzer B. R., Rosenbaum J. L. Cell cycle-dependent, in vitro assembly of microtubules onto pericentriolar material of HeLa cells. J Cell Biol. 1979 Jun;81(3):484–497. doi: 10.1083/jcb.81.3.484. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Tilney L. G., Goddard J. Nucleated sites for the assembly of cytoplasmic microtubules in the ectodermal cells of blastulae of Arbacia punctulata. J Cell Biol. 1970 Sep;46(3):564–575. doi: 10.1083/jcb.46.3.564. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Tucker R. W., Pardee A. B., Fujiwara K. Centriole ciliation is related to quiescence and DNA synthesis in 3T3 cells. Cell. 1979 Jul;17(3):527–535. doi: 10.1016/0092-8674(79)90261-7. [DOI] [PubMed] [Google Scholar]
  35. Vorobjev I. A., Chentsov YuS Centrioles in the cell cycle. I. Epithelial cells. J Cell Biol. 1982 Jun;93(3):938–949. doi: 10.1083/jcb.93.3.938. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Wright R. L., Salisbury J., Jarvik J. W. A nucleus-basal body connector in Chlamydomonas reinhardtii that may function in basal body localization or segregation. J Cell Biol. 1985 Nov;101(5 Pt 1):1903–1912. doi: 10.1083/jcb.101.5.1903. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES