Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1988 Dec 1;107(6):2657–2667. doi: 10.1083/jcb.107.6.2657

Inhibition of kinesin-driven microtubule motility by monoclonal antibodies to kinesin heavy chains

PMCID: PMC2115674  PMID: 2974459

Abstract

We have prepared and characterized seven mouse monoclonal antibodies (SUK 1-7) to the 130-kD heavy chain of sea urchin egg kinesin. On immunoblots, SUK 3 and SUK 4 cross-reacted with Drosophila embryo 116- kD heavy chains, and SUK 4, SUK 5, SUK 6, and SUK 7 bound to the 120-kD heavy chains of bovine brain kinesin. Three out of seven monoclonal antikinesins (SUK 4, SUK 6, and SUK 7) caused a dose-dependent inhibition of sea urchin egg kinesin-induced microtubule translocation, whereas the other four monoclonal antibodies had no detectable effect on this motility. The inhibitory monoclonal antibodies (SUK 4, SUK 6, and SUK 7) appear to bind to spatially related sites on an ATP- sensitive microtubule binding 45-kD chymotryptic fragment of the 130-kD heavy chain, whereas SUK 2 binds to a spatially distinct site. None of the monoclonal antikinesins inhibited the microtubule activated MgATPase activity of kinesin, suggesting that SUK 4, SUK 6, and SUK 7 uncouple this MgATPase activity from motility.

Full Text

The Full Text of this article is available as a PDF (2.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams R. J., Pollard T. D. Propulsion of organelles isolated from Acanthamoeba along actin filaments by myosin-I. Nature. 1986 Aug 21;322(6081):754–756. doi: 10.1038/322754a0. [DOI] [PubMed] [Google Scholar]
  2. Amos L. A. Kinesin from pig brain studied by electron microscopy. J Cell Sci. 1987 Feb;87(Pt 1):105–111. doi: 10.1242/jcs.87.1.105. [DOI] [PubMed] [Google Scholar]
  3. Bloom G. S., Wagner M. C., Pfister K. K., Brady S. T. Native structure and physical properties of bovine brain kinesin and identification of the ATP-binding subunit polypeptide. Biochemistry. 1988 May 3;27(9):3409–3416. doi: 10.1021/bi00409a043. [DOI] [PubMed] [Google Scholar]
  4. Brady S. T. A novel brain ATPase with properties expected for the fast axonal transport motor. Nature. 1985 Sep 5;317(6032):73–75. doi: 10.1038/317073a0. [DOI] [PubMed] [Google Scholar]
  5. Citi S., Kendrick-Jones J. Studies on the structure and conformation of brush border myosin using monoclonal antibodies. Eur J Biochem. 1987 Jun 1;165(2):315–325. doi: 10.1111/j.1432-1033.1987.tb11444.x. [DOI] [PubMed] [Google Scholar]
  6. Cohn S. A., Ingold A. L., Scholey J. M. Correlation between the ATPase and microtubule translocating activities of sea urchin egg kinesin. Nature. 1987 Jul 9;328(6126):160–163. doi: 10.1038/328160a0. [DOI] [PubMed] [Google Scholar]
  7. Flicker P. F., Peltz G., Sheetz M. P., Parham P., Spudich J. A. Site-specific inhibition of myosin-mediated motility in vitro by monoclonal antibodies. J Cell Biol. 1985 Apr;100(4):1024–1030. doi: 10.1083/jcb.100.4.1024. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gelles J., Schnapp B. J., Sheetz M. P. Tracking kinesin-driven movements with nanometre-scale precision. Nature. 1988 Feb 4;331(6155):450–453. doi: 10.1038/331450a0. [DOI] [PubMed] [Google Scholar]
  9. Gibbons B. H., Ogawa K., Gibbons I. R. The effect of antidynein 1 serum on the movement of reactivated sea urchin sperm. J Cell Biol. 1976 Dec;71(3):823–831. doi: 10.1083/jcb.71.3.823. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kappler J. W., Wade T., White J., Kushnir E., Blackman M., Bill J., Roehm N., Marrack P. A T cell receptor V beta segment that imparts reactivity to a class II major histocompatibility complex product. Cell. 1987 Apr 24;49(2):263–271. doi: 10.1016/0092-8674(87)90567-8. [DOI] [PubMed] [Google Scholar]
  11. Kiehart D. P., Kaiser D. A., Pollard T. D. Antibody inhibitors of nonmuscle myosin function and assembly. Methods Enzymol. 1986;134:423–453. doi: 10.1016/0076-6879(86)34109-0. [DOI] [PubMed] [Google Scholar]
  12. Kiehart D. P., Kaiser D. A., Pollard T. D. Direct localization of monoclonal antibody-binding sites on Acanthamoeba myosin-II and inhibition of filament formation by antibodies that bind to specific sites on the myosin-II tail. J Cell Biol. 1984 Sep;99(3):1015–1023. doi: 10.1083/jcb.99.3.1015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kiehart D. P., Kaiser D. A., Pollard T. D. Monoclonal antibodies demonstrate limited structural homology between myosin isozymes from Acanthamoeba. J Cell Biol. 1984 Sep;99(3):1002–1014. doi: 10.1083/jcb.99.3.1002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kiehart D. P., Mabuchi I., Inoué S. Evidence that myosin does not contribute to force production in chromosome movement. J Cell Biol. 1982 Jul;94(1):165–178. doi: 10.1083/jcb.94.1.165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kiehart D. P., Pollard T. D. Inhibition of acanthamoeba actomyosin-II ATPase activity and mechanochemical function by specific monoclonal antibodies. J Cell Biol. 1984 Sep;99(3):1024–1033. doi: 10.1083/jcb.99.3.1024. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kuznetsov S. A., Gelfand V. I. Bovine brain kinesin is a microtubule-activated ATPase. Proc Natl Acad Sci U S A. 1986 Nov;83(22):8530–8534. doi: 10.1073/pnas.83.22.8530. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kuznetsov S. A., Vaisberg E. A., Shanina N. A., Magretova N. N., Chernyak V. Y., Gelfand V. I. The quaternary structure of bovine brain kinesin. EMBO J. 1988 Feb;7(2):353–356. doi: 10.1002/j.1460-2075.1988.tb02820.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Leslie R. J., Hird R. B., Wilson L., McIntosh J. R., Scholey J. M. Kinesin is associated with a nonmicrotubule component of sea urchin mitotic spindles. Proc Natl Acad Sci U S A. 1987 May;84(9):2771–2775. doi: 10.1073/pnas.84.9.2771. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Mabuchi I., Okuno M. The effect of myosin antibody on the division of starfish blastomeres. J Cell Biol. 1977 Jul;74(1):251–263. doi: 10.1083/jcb.74.1.251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Markwell M. A., Fox C. F. Surface-specific iodination of membrane proteins of viruses and eucaryotic cells using 1,3,4,6-tetrachloro-3alpha,6alpha-diphenylglycoluril. Biochemistry. 1978 Oct 31;17(22):4807–4817. doi: 10.1021/bi00615a031. [DOI] [PubMed] [Google Scholar]
  21. Neighbors B. W., Williams R. C., Jr, McIntosh J. R. Localization of kinesin in cultured cells. J Cell Biol. 1988 Apr;106(4):1193–1204. doi: 10.1083/jcb.106.4.1193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Ogawa K., Mori H. Preparation of antiserum against a tryptic fragment (fragment A) of dynein and an immunological approach to the subunit composition of dynein. J Biol Chem. 1975 Aug 25;250(16):6476–6483. [PubMed] [Google Scholar]
  23. Okuno M., Ogawa K., Mohri H. Inhibition of movement and ATP-ase activity of demembranated sea urchin spermatozoa by anti-dynein antiserum. Biochem Biophys Res Commun. 1976 Feb 9;68(3):901–906. doi: 10.1016/0006-291x(76)91230-4. [DOI] [PubMed] [Google Scholar]
  24. Peltz G., Spudich J. A., Parham P. Monoclonal antibodies against seven sites on the head and tail of Dictyostelium myosin. J Cell Biol. 1985 Apr;100(4):1016–1023. doi: 10.1083/jcb.100.4.1016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Porter M. E., Grissom P. M., Scholey J. M., Salmon E. D., McIntosh J. R. Dynein isoforms in sea urchin eggs. J Biol Chem. 1988 May 15;263(14):6759–6771. [PubMed] [Google Scholar]
  26. Porter M. E., Scholey J. M., Stemple D. L., Vigers G. P., Vale R. D., Sheetz M. P., McIntosh J. R. Characterization of the microtubule movement produced by sea urchin egg kinesin. J Biol Chem. 1987 Feb 25;262(6):2794–2802. [PubMed] [Google Scholar]
  27. Pryer N. K., Wadsworth P., Salmon E. D. Polarized microtubule gliding and particle saltations produced by soluble factors from sea urchin eggs and embryos. Cell Motil Cytoskeleton. 1986;6(6):537–548. doi: 10.1002/cm.970060602. [DOI] [PubMed] [Google Scholar]
  28. Saxton W. M., Porter M. E., Cohn S. A., Scholey J. M., Raff E. C., McIntosh J. R. Drosophila kinesin: characterization of microtubule motility and ATPase. Proc Natl Acad Sci U S A. 1988 Feb;85(4):1109–1113. doi: 10.1073/pnas.85.4.1109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Scholey J. M., Neighbors B., McIntosh J. R., Salmon E. D. Isolation of microtubules and a dynein-like MgATPase from unfertilized sea urchin eggs. J Biol Chem. 1984 May 25;259(10):6516–6525. [PubMed] [Google Scholar]
  30. Scholey J. M., Porter M. E., Grissom P. M., McIntosh J. R. Identification of kinesin in sea urchin eggs, and evidence for its localization in the mitotic spindle. Nature. 1985 Dec 5;318(6045):483–486. doi: 10.1038/318483a0. [DOI] [PubMed] [Google Scholar]
  31. Vale R. D. Intracellular transport using microtubule-based motors. Annu Rev Cell Biol. 1987;3:347–378. doi: 10.1146/annurev.cb.03.110187.002023. [DOI] [PubMed] [Google Scholar]
  32. Vale R. D., Reese T. S., Sheetz M. P. Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility. Cell. 1985 Aug;42(1):39–50. doi: 10.1016/s0092-8674(85)80099-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Vale R. D., Schnapp B. J., Mitchison T., Steuer E., Reese T. S., Sheetz M. P. Different axoplasmic proteins generate movement in opposite directions along microtubules in vitro. Cell. 1985 Dec;43(3 Pt 2):623–632. doi: 10.1016/0092-8674(85)90234-x. [DOI] [PubMed] [Google Scholar]
  34. Yang J. T., Saxton W. M., Goldstein L. S. Isolation and characterization of the gene encoding the heavy chain of Drosophila kinesin. Proc Natl Acad Sci U S A. 1988 Mar;85(6):1864–1868. doi: 10.1073/pnas.85.6.1864. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES