Abstract
A 110-115-kD protein is present at levels 27-fold higher in migratory epithelium in the rat cornea than in stationary epithelium. This protein represents 2.7% of the total protein in migratory epithelium 6- h postabrasion wound and 0.1% of the total protein in stationary epithelium. Our findings demonstrate that this 110-115-kD protein is vinculin. In Western blots comparing proteins from migratory and control epithelium, antibody against vinculin cross-reacted with the 110-115-kD protein. Using immunoslot blots, vinculin was determined to be present at maximal levels 6 h postabrasion wound, at levels 22- and 8-fold higher than control at 18 and 48 h, respectively, returning to control levels 72 h postwounding. Vinculin was also localized by indirect immunohistochemistry in migrating corneal epithelium. 3-mm scrape wounds were allowed to heal in vivo for 20 h. In flat mounts of these whole wounded corneas, vinculin was localized as punctate spots in the leading edge of migrating epithelium. In cryostat sections, vinculin was localized as punctate spots along the basal cell membranes of the migrating sheet adjacent to the basement membrane and in patches between cells as well as diffusely throughout the cell. Only very diffuse localization with occasional punctate spots between adjacent superficial cells was present in stationary epithelium. The increased synthesis of vinculin during migration and the localization of vinculin at the leading edge of migratory epithelium suggest that vinculin may be involved in cell-cell and cell-substrate adhesion as the sheet of epithelium migrates to cover a wound.
Full Text
The Full Text of this article is available as a PDF (1.5 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson R. A. Actin filaments in normal and migrating corneal epithelial cells. Invest Ophthalmol Vis Sci. 1977 Feb;16(2):161–166. [PubMed] [Google Scholar]
- Antler A. M., Greenberg M. E., Edelman G. M., Hanafusa H. Increased phosphorylation of tyrosine in vinculin does not occur upon transformation by some avian sarcoma viruses. Mol Cell Biol. 1985 Jan;5(1):263–267. doi: 10.1128/mcb.5.1.263. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Asyee G. M., Sturk A., Muszbek L. Association of vinculin to the platelet cytoskeleton during thrombin-induced aggregation. Exp Cell Res. 1987 Feb;168(2):358–364. doi: 10.1016/0014-4827(87)90008-5. [DOI] [PubMed] [Google Scholar]
- Burridge K., Fath K., Kelly T., Nuckolls G., Turner C. Focal adhesions: transmembrane junctions between the extracellular matrix and the cytoskeleton. Annu Rev Cell Biol. 1988;4:487–525. doi: 10.1146/annurev.cb.04.110188.002415. [DOI] [PubMed] [Google Scholar]
- Burridge K., Feramisco J. R. Microinjection and localization of a 130K protein in living fibroblasts: a relationship to actin and fibronectin. Cell. 1980 Mar;19(3):587–595. doi: 10.1016/s0092-8674(80)80035-3. [DOI] [PubMed] [Google Scholar]
- Burridge K., Mangeat P. An interaction between vinculin and talin. Nature. 1984 Apr 19;308(5961):744–746. doi: 10.1038/308744a0. [DOI] [PubMed] [Google Scholar]
- Evans R. R., Robson R. M., Stromer M. H. Properties of smooth muscle vinculin. J Biol Chem. 1984 Mar 25;259(6):3916–3924. [PubMed] [Google Scholar]
- Feramisco J. R., Burridge K. A rapid purification of alpha-actinin, filamin, and a 130,000-dalton protein from smooth muscle. J Biol Chem. 1980 Feb 10;255(3):1194–1199. [PubMed] [Google Scholar]
- Geiger B. A 130K protein from chicken gizzard: its localization at the termini of microfilament bundles in cultured chicken cells. Cell. 1979 Sep;18(1):193–205. doi: 10.1016/0092-8674(79)90368-4. [DOI] [PubMed] [Google Scholar]
- Geiger B., Dutton A. H., Tokuyasu K. T., Singer S. J. Immunoelectron microscope studies of membrane-microfilament interactions: distributions of alpha-actinin, tropomyosin, and vinculin in intestinal epithelial brush border and chicken gizzard smooth muscle cells. J Cell Biol. 1981 Dec;91(3 Pt 1):614–628. doi: 10.1083/jcb.91.3.614. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Geiger B., Tokuyasu K. T., Dutton A. H., Singer S. J. Vinculin, an intracellular protein localized at specialized sites where microfilament bundles terminate at cell membranes. Proc Natl Acad Sci U S A. 1980 Jul;77(7):4127–4131. doi: 10.1073/pnas.77.7.4127. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Geiger B., Volk T., Volberg T., Bendori R. Molecular interactions in adherens-type contacts. J Cell Sci Suppl. 1987;8:251–272. doi: 10.1242/jcs.1987.supplement_8.14. [DOI] [PubMed] [Google Scholar]
- Gibbins J. R. Epithelial migration in organ culture. Role of protein synthesis as determined by metabolic inhibitors. Exp Cell Res. 1973 Aug;80(2):281–290. doi: 10.1016/0014-4827(73)90298-x. [DOI] [PubMed] [Google Scholar]
- Gipson I. K., Anderson R. A. Effect of lectins on migration of the corneal epithelium. Invest Ophthalmol Vis Sci. 1980 Apr;19(4):341–349. [PubMed] [Google Scholar]
- Gipson I. K., Kiorpes T. C. Epithelial sheet movement: protein and glycoprotein synthesis. Dev Biol. 1982 Jul;92(1):259–262. doi: 10.1016/0012-1606(82)90170-1. [DOI] [PubMed] [Google Scholar]
- Halegoua S. Changes in the phosphorylation and distribution of vinculin during nerve growth factor induced neurite outgrowth. Dev Biol. 1987 May;121(1):97–104. doi: 10.1016/0012-1606(87)90142-4. [DOI] [PubMed] [Google Scholar]
- Hanna C. Proliferation and migration of epithelial cells during corneal wound repair in the rabbit and the rat. Am J Ophthalmol. 1966 Jan;61(1):55–63. [PubMed] [Google Scholar]
- Herman B., Harrington M. A., Olashaw N. E., Pledger W. J. Identification of the cellular mechanisms responsible for platelet-derived growth factor induced alterations in cytoplasmic vinculin distribution. J Cell Physiol. 1986 Jan;126(1):115–125. doi: 10.1002/jcp.1041260116. [DOI] [PubMed] [Google Scholar]
- Horwitz A., Duggan K., Buck C., Beckerle M. C., Burridge K. Interaction of plasma membrane fibronectin receptor with talin--a transmembrane linkage. Nature. 1986 Apr 10;320(6062):531–533. doi: 10.1038/320531a0. [DOI] [PubMed] [Google Scholar]
- Iwashita S., Kitamura N., Yoshida M. Molecular events leading to fusiform morphological transformation by partial src deletion mutant of Rous sarcoma virus. Virology. 1983 Mar;125(2):419–431. doi: 10.1016/0042-6822(83)90213-1. [DOI] [PubMed] [Google Scholar]
- Jockusch B. M., Isenberg G. Interaction of alpha-actinin and vinculin with actin: opposite effects on filament network formation. Proc Natl Acad Sci U S A. 1981 May;78(5):3005–3009. doi: 10.1073/pnas.78.5.3005. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Järvinen M., Ylänne J., Vartio T., Virtanen I. Tumor promoter and fibronectin induce actin stress fibers and focal adhesion sites in spreading human erythroleukemia (HEL) cells. Eur J Cell Biol. 1987 Oct;44(2):238–246. [PubMed] [Google Scholar]
- Kellie S., Patel B., Mitchell A., Critchley D. R., Wigglesworth N. M., Wyke J. A. Comparison of the relative importance of tyrosine-specific vinculin phosphorylation and the loss of surface-associated fibronectin in the morphology of cells transformed by Rous sarcoma virus. J Cell Sci. 1986 Jun;82:129–142. doi: 10.1242/jcs.82.1.129. [DOI] [PubMed] [Google Scholar]
- Khodadoust A. A., Silverstein A. M., Kenyon D. R., Dowling J. E. Adhesion of regenerating corneal epithelium. The role of basement membrane. Am J Ophthalmol. 1968 Mar;65(3):339–348. doi: 10.1016/0002-9394(68)93082-1. [DOI] [PubMed] [Google Scholar]
- Koteliansky V. E., Gneushev G. N. Vinculin localization in cardiac muscle. FEBS Lett. 1983 Aug 8;159(1-2):158–160. doi: 10.1016/0014-5793(83)80437-2. [DOI] [PubMed] [Google Scholar]
- Nigg E. A., Sefton B. M., Singer S. J., Vogt P. K. Cytoskeletal organization, vinculin-phosphorylation, and fibronectin expression in transformed fibroblasts with different cell morphologies. Virology. 1986 May;151(1):50–65. doi: 10.1016/0042-6822(86)90103-0. [DOI] [PubMed] [Google Scholar]
- Opas M., Turksen K., Kalnins V. I. Adhesiveness and distribution of vinculin and spectrin in retinal pigmented epithelial cells during growth and differentiation in vitro. Dev Biol. 1985 Feb;107(2):269–280. doi: 10.1016/0012-1606(85)90310-0. [DOI] [PubMed] [Google Scholar]
- Otto J. J. Detection of vinculin-binding proteins with an 125I-vinculin gel overlay technique. J Cell Biol. 1983 Oct;97(4):1283–1287. doi: 10.1083/jcb.97.4.1283. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pardo J. V., Siliciano J. D., Craig S. W. Vinculin is a component of an extensive network of myofibril-sarcolemma attachment regions in cardiac muscle fibers. J Cell Biol. 1983 Oct;97(4):1081–1088. doi: 10.1083/jcb.97.4.1081. [DOI] [PMC free article] [PubMed] [Google Scholar]
- RICHARDSON K. C., JARETT L., FINKE E. H. Embedding in epoxy resins for ultrathin sectioning in electron microscopy. Stain Technol. 1960 Nov;35:313–323. doi: 10.3109/10520296009114754. [DOI] [PubMed] [Google Scholar]
- Rohrschneider L., Rosok M. J. Transformation parameters and pp60src localization in cells infected with partial transformation mutants of Rous sarcoma virus. Mol Cell Biol. 1983 Apr;3(4):731–746. doi: 10.1128/mcb.3.4.731. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schröer E., Wegner A. Purification and characterization of a protein from chicken gizzard, which inhibits actin polymerization. Eur J Biochem. 1985 Dec 16;153(3):515–520. doi: 10.1111/j.1432-1033.1985.tb09332.x. [DOI] [PubMed] [Google Scholar]
- Sefton B. M., Hunter T., Ball E. H., Singer S. J. Vinculin: a cytoskeletal target of the transforming protein of Rous sarcoma virus. Cell. 1981 Apr;24(1):165–174. doi: 10.1016/0092-8674(81)90512-2. [DOI] [PubMed] [Google Scholar]
- Singer I. I., Paradiso P. R. A transmembrane relationship between fibronectin and vinculin (130 kd protein): serum modulation in normal and transformed hamster fibroblasts. Cell. 1981 May;24(2):481–492. doi: 10.1016/0092-8674(81)90339-1. [DOI] [PubMed] [Google Scholar]
- Soong H. K. Vinculin in focal cell-to-substrate attachments of spreading corneal epithelial cells. Arch Ophthalmol. 1987 Aug;105(8):1129–1132. doi: 10.1001/archopht.1987.01060080131043. [DOI] [PubMed] [Google Scholar]
- Spurr-Michaud S. J., Barza M., Gipson I. K. An organ culture system for study of adherence of Pseudomonas aeruginosa to normal and wounded corneas. Invest Ophthalmol Vis Sci. 1988 Mar;29(3):379–386. [PubMed] [Google Scholar]
- Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ungar F., Geiger B., Ben-Ze'ev A. Cell contact- and shape-dependent regulation of vinculin synthesis in cultured fibroblasts. 1986 Feb 27-Mar 5Nature. 319(6056):787–791. doi: 10.1038/319787a0. [DOI] [PubMed] [Google Scholar]
- Wilkins J. A., Lin S. A re-examination of the interaction of vinculin with actin. J Cell Biol. 1986 Mar;102(3):1085–1092. doi: 10.1083/jcb.102.3.1085. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilkins J. A., Lin S. High-affinity interaction of vinculin with actin filaments in vitro. Cell. 1982 Jan;28(1):83–90. doi: 10.1016/0092-8674(82)90377-4. [DOI] [PubMed] [Google Scholar]
- Wray W., Boulikas T., Wray V. P., Hancock R. Silver staining of proteins in polyacrylamide gels. Anal Biochem. 1981 Nov 15;118(1):197–203. doi: 10.1016/0003-2697(81)90179-2. [DOI] [PubMed] [Google Scholar]
- Zieske J. D., Gipson I. K. Protein synthesis during corneal epithelial wound healing. Invest Ophthalmol Vis Sci. 1986 Jan;27(1):1–7. [PubMed] [Google Scholar]
- Zieske J. D., Higashijima S. C., Spurr-Michaud S. J., Gipson I. K. Biosynthetic responses of the rabbit cornea to a keratectomy wound. Invest Ophthalmol Vis Sci. 1987 Oct;28(10):1668–1677. [PubMed] [Google Scholar]