Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1989 Aug 1;109(2):593–605. doi: 10.1083/jcb.109.2.593

Expression of human plasma gelsolin in Escherichia coli and dissection of actin binding sites by segmental deletion mutagenesis

PMCID: PMC2115723  PMID: 2547804

Abstract

Human plasma gelsolin has been expressed in high yield and soluble form in Escherichia coli. The protein has nucleating and severing activities identical to those of plasma gelsolin and is fully calcium sensitive in its interactions with monomeric actin. A number of deletion mutants have been expressed to explore the function of the three actin binding sites. Their design is based on the sixfold segmental repeat in the protein sequence. (These sites are located in segment 1, segments 2-3, and segments 4-6). Two mutants, S1-3 and S4-6, are equivalent to the NH2- and COOH-terminal halves of the molecule obtained by limited proteolysis. S1-3 binds two actin monomers in the presence or absence of calcium, it severs and caps filaments but does not nucleate polymerization. S4-6 binds a single actin monomer but only in calcium. These observations confirm and extend current knowledge on the properties of the two halves of gelsolin. Two novel constructs have also been studied that provide a different pairwise juxtaposition of the three sites. S2-6, which lacks the high affinity site of segment 1 (equivalent to the 14,000-Mr proteolytic fragment) and S1,4-6, which lacks segments 2-3 (the actin filament binding domain previously identified using the 28,000-Mr proteolytic fragment). S2-6 binds two actin monomers in calcium and nucleates polymerization; it associates laterally with filaments in the presence or absence of calcium and has a weak calcium-dependent fragmenting activity. S1,4-6 also binds two actin monomers in calcium and one in EGTA, has weak severing activity but does not nucleate polymerization. A model is presented for the involvement of the three binding sites in the various activities of gelsolin.

Full Text

The Full Text of this article is available as a PDF (2.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ampe C., Vandekerckhove J. The F-actin capping proteins of Physarum polycephalum: cap42(a) is very similar, if not identical, to fragmin and is structurally and functionally very homologous to gelsolin; cap42(b) is Physarum actin. EMBO J. 1987 Dec 20;6(13):4149–4157. doi: 10.1002/j.1460-2075.1987.tb02761.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. André E., Lottspeich F., Schleicher M., Noegel A. Severin, gelsolin, and villin share a homologous sequence in regions presumed to contain F-actin severing domains. J Biol Chem. 1988 Jan 15;263(2):722–727. [PubMed] [Google Scholar]
  3. Arpin M., Pringault E., Finidori J., Garcia A., Jeltsch J. M., Vandekerckhove J., Louvard D. Sequence of human villin: a large duplicated domain homologous with other actin-severing proteins and a unique small carboxy-terminal domain related to villin specificity. J Cell Biol. 1988 Nov;107(5):1759–1766. doi: 10.1083/jcb.107.5.1759. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bazari W. L., Matsudaira P., Wallek M., Smeal T., Jakes R., Ahmed Y. Villin sequence and peptide map identify six homologous domains. Proc Natl Acad Sci U S A. 1988 Jul;85(14):4986–4990. doi: 10.1073/pnas.85.14.4986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bernstein B. W., Bamburg J. R. Tropomyosin binding to F-actin protects the F-actin from disassembly by brain actin-depolymerizing factor (ADF). Cell Motil. 1982;2(1):1–8. doi: 10.1002/cm.970020102. [DOI] [PubMed] [Google Scholar]
  6. Bryan J., Coluccio L. M. Kinetic analysis of F-actin depolymerization in the presence of platelet gelsolin and gelsolin-actin complexes. J Cell Biol. 1985 Oct;101(4):1236–1244. doi: 10.1083/jcb.101.4.1236. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bryan J. Gelsolin has three actin-binding sites. J Cell Biol. 1988 May;106(5):1553–1562. doi: 10.1083/jcb.106.5.1553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bryan J., Hwo S. Definition of an N-terminal actin-binding domain and a C-terminal Ca2+ regulatory domain in human brevin. J Cell Biol. 1986 Apr;102(4):1439–1446. doi: 10.1083/jcb.102.4.1439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Bryan J., Kurth M. C. Actin-gelsolin interactions. Evidence for two actin-binding sites. J Biol Chem. 1984 Jun 25;259(12):7480–7487. [PubMed] [Google Scholar]
  10. Carlier M. F., Pantaloni D. Binding of phosphate to F-ADP-actin and role of F-ADP-Pi-actin in ATP-actin polymerization. J Biol Chem. 1988 Jan 15;263(2):817–825. [PubMed] [Google Scholar]
  11. Carter P., Bedouelle H., Winter G. Improved oligonucleotide site-directed mutagenesis using M13 vectors. Nucleic Acids Res. 1985 Jun 25;13(12):4431–4443. doi: 10.1093/nar/13.12.4431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Chaponnier C., Janmey P. A., Yin H. L. The actin filament-severing domain of plasma gelsolin. J Cell Biol. 1986 Oct;103(4):1473–1481. doi: 10.1083/jcb.103.4.1473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Coué M., Korn E. D. Interaction of plasma gelsolin with G-actin and F-actin in the presence and absence of calcium ions. J Biol Chem. 1985 Dec 5;260(28):15033–15041. [PubMed] [Google Scholar]
  14. Doi Y., Frieden C. Actin polymerization. The effect of brevin on filament size and rate of polymerization. J Biol Chem. 1984 Oct 10;259(19):11868–11875. [PubMed] [Google Scholar]
  15. Harafuji H., Ogawa Y. Re-examination of the apparent binding constant of ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid with calcium around neutral pH. J Biochem. 1980 May;87(5):1305–1312. doi: 10.1093/oxfordjournals.jbchem.a132868. [DOI] [PubMed] [Google Scholar]
  16. Harris H. E., Bamburg J. R., Bernstein B. W., Weeds A. G. The depolymerization of actin by specific proteins from plasma and brain: a quantitative assay. Anal Biochem. 1982 Jan 1;119(1):102–114. doi: 10.1016/0003-2697(82)90672-8. [DOI] [PubMed] [Google Scholar]
  17. Harris H. E., Gooch J. An actin depolymerizing protein from pig plasma. FEBS Lett. 1981 Jan 12;123(1):49–53. doi: 10.1016/0014-5793(81)80017-8. [DOI] [PubMed] [Google Scholar]
  18. Harris H. E. Lack of nucleotide cleavage on the binding of G-actin-ATP to plasma gelsolin. FEBS Lett. 1985 Oct 7;190(1):81–83. doi: 10.1016/0014-5793(85)80432-4. [DOI] [PubMed] [Google Scholar]
  19. Harris H. E. The binary complex of pig plasma gelsolin with Mg2+-G-actin in ATP and ADP. FEBS Lett. 1988 Jun 20;233(2):359–362. doi: 10.1016/0014-5793(88)80460-5. [DOI] [PubMed] [Google Scholar]
  20. Harris H. E., Weeds A. G. Plasma actin depolymerizing factor has both calcium-dependent and calcium-independent effects on actin. Biochemistry. 1983 May 24;22(11):2728–2741. doi: 10.1021/bi00280a022. [DOI] [PubMed] [Google Scholar]
  21. Janmey P. A., Stossel T. P. Kinetics of actin monomer exchange at the slow growing ends of actin filaments and their relation to the elongation of filaments shortened by gelsolin. J Muscle Res Cell Motil. 1986 Oct;7(5):446–454. doi: 10.1007/BF01753587. [DOI] [PubMed] [Google Scholar]
  22. Janmey P. A., Stossel T. P., Lind S. E. Sequential binding of actin monomers to plasma gelsolin and its inhibition by vitamin D-binding protein. Biochem Biophys Res Commun. 1986 Apr 14;136(1):72–79. doi: 10.1016/0006-291x(86)90878-8. [DOI] [PubMed] [Google Scholar]
  23. Koch G., Smith M., Macer D., Webster P., Mortara R. Endoplasmic reticulum contains a common, abundant calcium-binding glycoprotein, endoplasmin. J Cell Sci. 1986 Dec;86:217–232. doi: 10.1242/jcs.86.1.217. [DOI] [PubMed] [Google Scholar]
  24. Kurth M. C., Bryan J. Platelet activation induces the formation of a stable gelsolin-actin complex from monomeric gelsolin. J Biol Chem. 1984 Jun 25;259(12):7473–7479. [PubMed] [Google Scholar]
  25. Kwiatkowski D. J., Janmey P. A., Mole J. E., Yin H. L. Isolation and properties of two actin-binding domains in gelsolin. J Biol Chem. 1985 Dec 5;260(28):15232–15238. [PubMed] [Google Scholar]
  26. Kwiatkowski D. J., Janmey P. A., Yin H. L. Identification of critical functional and regulatory domains in gelsolin. J Cell Biol. 1989 May;108(5):1717–1726. doi: 10.1083/jcb.108.5.1717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Kwiatkowski D. J., Mehl R., Izumo S., Nadal-Ginard B., Yin H. L. Muscle is the major source of plasma gelsolin. J Biol Chem. 1988 Jun 15;263(17):8239–8243. [PubMed] [Google Scholar]
  28. Kwiatkowski D. J., Stossel T. P., Orkin S. H., Mole J. E., Colten H. R., Yin H. L. Plasma and cytoplasmic gelsolins are encoded by a single gene and contain a duplicated actin-binding domain. Nature. 1986 Oct 2;323(6087):455–458. doi: 10.1038/323455a0. [DOI] [PubMed] [Google Scholar]
  29. Matsudaira P. Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membranes. J Biol Chem. 1987 Jul 25;262(21):10035–10038. [PubMed] [Google Scholar]
  30. Nagai K., Thøgersen H. C. Generation of beta-globin by sequence-specific proteolysis of a hybrid protein produced in Escherichia coli. 1984 Jun 28-Jul 4Nature. 309(5971):810–812. doi: 10.1038/309810a0. [DOI] [PubMed] [Google Scholar]
  31. Nagai K., Thøgersen H. C. Synthesis and sequence-specific proteolysis of hybrid proteins produced in Escherichia coli. Methods Enzymol. 1987;153:461–481. doi: 10.1016/0076-6879(87)53072-5. [DOI] [PubMed] [Google Scholar]
  32. Pinder J. C., Weeds A. G., Gratzer W. B. Study of actin filament ends in the human red cell membrane. J Mol Biol. 1986 Oct 5;191(3):461–468. doi: 10.1016/0022-2836(86)90141-5. [DOI] [PubMed] [Google Scholar]
  33. Podolski J. L., Steck T. L. Association of deoxyribonuclease I with the pointed ends of actin filaments in human red blood cell membrane skeletons. J Biol Chem. 1988 Jan 15;263(2):638–645. [PubMed] [Google Scholar]
  34. Pope B., Weeds A. G. Binding of pig plasma gelsolin to F-actin and partial fractionation into calcium-dependent and calcium-independent forms. Eur J Biochem. 1986 Nov 17;161(1):85–93. doi: 10.1111/j.1432-1033.1986.tb10127.x. [DOI] [PubMed] [Google Scholar]
  35. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Selve N., Wegner A. Rate of treadmilling of actin filaments in vitro. J Mol Biol. 1986 Feb 20;187(4):627–631. doi: 10.1016/0022-2836(86)90341-4. [DOI] [PubMed] [Google Scholar]
  37. Selve N., Wegner A. pH-dependent rate of formation of the gelsolin-actin complex from gelsolin and monomeric actin. Eur J Biochem. 1987 Oct 1;168(1):111–115. doi: 10.1111/j.1432-1033.1987.tb13394.x. [DOI] [PubMed] [Google Scholar]
  38. Tellam R. L. Gelsolin inhibits nucleotide exchange from actin. Biochemistry. 1986 Sep 23;25(19):5799–5804. doi: 10.1021/bi00367a068. [DOI] [PubMed] [Google Scholar]
  39. Valentine R. C., Shapiro B. M., Stadtman E. R. Regulation of glutamine synthetase. XII. Electron microscopy of the enzyme from Escherichia coli. Biochemistry. 1968 Jun;7(6):2143–2152. doi: 10.1021/bi00846a017. [DOI] [PubMed] [Google Scholar]
  40. Walsh T. P., Weber A., Davis K., Bonder E., Mooseker M. Calcium dependence of villin-induced actin depolymerization. Biochemistry. 1984 Dec 4;23(25):6099–6102. doi: 10.1021/bi00320a030. [DOI] [PubMed] [Google Scholar]
  41. Way M., Weeds A. Nucleotide sequence of pig plasma gelsolin. Comparison of protein sequence with human gelsolin and other actin-severing proteins shows strong homologies and evidence for large internal repeats. J Mol Biol. 1988 Oct 20;203(4):1127–1133. doi: 10.1016/0022-2836(88)90132-5. [DOI] [PubMed] [Google Scholar]
  42. Weeds A. G., Gooch J., Pope B., Harris H. E. Preparation and characterization of pig plasma and platelet gelsolins. Eur J Biochem. 1986 Nov 17;161(1):69–76. doi: 10.1111/j.1432-1033.1986.tb10125.x. [DOI] [PubMed] [Google Scholar]
  43. Weeds A. G., Harris H., Gratzer W., Gooch J. Interactions of pig plasma gelsolin with G-actin. Eur J Biochem. 1986 Nov 17;161(1):77–84. doi: 10.1111/j.1432-1033.1986.tb10126.x. [DOI] [PubMed] [Google Scholar]
  44. Yin H. L. Gelsolin: calcium- and polyphosphoinositide-regulated actin-modulating protein. Bioessays. 1987 Oct;7(4):176–179. doi: 10.1002/bies.950070409. [DOI] [PubMed] [Google Scholar]
  45. Yin H. L., Hartwig J. H., Maruyama K., Stossel T. P. Ca2+ control of actin filament length. Effects of macrophage gelsolin on actin polymerization. J Biol Chem. 1981 Sep 25;256(18):9693–9697. [PubMed] [Google Scholar]
  46. Yin H. L., Iida K., Janmey P. A. Identification of a polyphosphoinositide-modulated domain in gelsolin which binds to the sides of actin filaments. J Cell Biol. 1988 Mar;106(3):805–812. doi: 10.1083/jcb.106.3.805. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Yin H. L., Zaner K. S., Stossel T. P. Ca2+ control of actin gelation. Interaction of gelsolin with actin filaments and regulation of actin gelation. J Biol Chem. 1980 Oct 10;255(19):9494–9500. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES