Abstract
Proteolipid protein (PLP) is the most abundant transmembrane protein in myelin of the central nervous system. Conflicting models of PLP topology have been generated by computer predictions based on its primary sequence and experiments with purified myelin. We have examined the initial events in myelin synthesis, including the insertion and orientation of PLP in the plasma membrane, in rat oligodendrocytes which express PLP and the other myelin-specific proteins when cultured without neurons (Dubois-Dalcq, M., T. Behar, L. Hudson, and R. A. Lazzarini. 1986. J. Cell Biol. 102:384-392). These cells, identified by the presence of surface galactocerebroside, the major myelin glycolipid, were stained with six anti-peptide antibodies directed against hydrophilic or short hydrophobic sequences of PLP. Five of these anti-peptide antibodies specifically stained living oligodendrocytes. Staining was only seen approximately 10 d after PLP was first detected in the cytoplasm of fixed and permeabilized cells, suggesting that PLP is slowly transported from the RER to the cell surface. The presence of PLP domains on the extracellular surface was also confirmed by cleavage of such domains with proteases and by antibody-dependent complement-mediated lysis of living oligodendrocytes. Our results indicate that PLP has only two transmembrane domains and that the great majority of the protein, including its amino and carboxy termini, is located on the extracellular face of the oligodendrocyte plasma membrane. This disposition of the PLP molecule suggests that homophilic interactions between PLP molecules of apposed extracellular faces may mediate compaction of adjacent bilayers in the myelin sheath.
Full Text
The Full Text of this article is available as a PDF (2.9 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arnheiter H., Thomas R. M., Leist T., Fountoulakis M., Gutte B. Physicochemical and antigenic properties of synthetic fragments of human leukocyte interferon. Nature. 1981 Nov 19;294(5838):278–280. doi: 10.1038/294278a0. [DOI] [PubMed] [Google Scholar]
- Benjamins J. A., Iwata R., Hazlett J. Kinetics of entry of proteins into the myelin membrane. J Neurochem. 1978 Oct;31(4):1077–1085. doi: 10.1111/j.1471-4159.1978.tb00150.x. [DOI] [PubMed] [Google Scholar]
- Bizzozero O. A., McGarry J. F., Lees M. B. Acylation of endogenous myelin proteolipid protein with different acyl-CoAs. J Biol Chem. 1987 Feb 15;262(5):2138–2145. [PubMed] [Google Scholar]
- Cockle S. A., Epand R. M., Boggs J. M., Moscarello M. A. Circular dichroism studies on lipid-protein complexes of a hydrophobic myelin protein. Biochemistry. 1978 Feb 21;17(4):624–629. doi: 10.1021/bi00597a010. [DOI] [PubMed] [Google Scholar]
- Colman D. R., Kreibich G., Frey A. B., Sabatini D. D. Synthesis and incorporation of myelin polypeptides into CNS myelin. J Cell Biol. 1982 Nov;95(2 Pt 1):598–608. doi: 10.1083/jcb.95.2.598. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Criado M., Hochschwender S., Sarin V., Fox J. L., Lindstrom J. Evidence for unpredicted transmembrane domains in acetylcholine receptor subunits. Proc Natl Acad Sci U S A. 1985 Apr;82(7):2004–2008. doi: 10.1073/pnas.82.7.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dautigny A., Alliel P. M., d'Auriol L., Pham Dinh D., Nussbaum J. L., Galibert F., Jollès P. Molecular cloning and nucleotide sequence of a cDNA clone coding for rat brain myelin proteolipid. FEBS Lett. 1985 Aug 19;188(1):33–36. doi: 10.1016/0014-5793(85)80869-3. [DOI] [PubMed] [Google Scholar]
- Dautigny A., Mattei M. G., Morello D., Alliel P. M., Pham-Dinh D., Amar L., Arnaud D., Simon D., Mattei J. F., Guenet J. L. The structural gene coding for myelin-associated proteolipid protein is mutated in jimpy mice. 1986 Jun 26-Jul 2Nature. 321(6073):867–869. doi: 10.1038/321867a0. [DOI] [PubMed] [Google Scholar]
- Diehl H. J., Schaich M., Budzinski R. M., Stoffel W. Individual exons encode the integral membrane domains of human myelin proteolipid protein. Proc Natl Acad Sci U S A. 1986 Dec;83(24):9807–9811. doi: 10.1073/pnas.83.24.9807. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dubois-Dalcq M., Behar T., Hudson L., Lazzarini R. A. Emergence of three myelin proteins in oligodendrocytes cultured without neurons. J Cell Biol. 1986 Feb;102(2):384–392. doi: 10.1083/jcb.102.2.384. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dyer C. A., Benjamins J. A. Antibody to galactocerebroside alters organization of oligodendroglial membrane sheets in culture. J Neurosci. 1988 Nov;8(11):4307–4318. doi: 10.1523/JNEUROSCI.08-11-04307.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dyer C. A., Benjamins J. A. Redistribution and internalization of antibodies to galactocerebroside by oligodendroglia. J Neurosci. 1988 Mar;8(3):883–891. doi: 10.1523/JNEUROSCI.08-03-00883.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eisenberg D. Three-dimensional structure of membrane and surface proteins. Annu Rev Biochem. 1984;53:595–623. doi: 10.1146/annurev.bi.53.070184.003115. [DOI] [PubMed] [Google Scholar]
- Hudson L. D., Berndt J. A., Puckett C., Kozak C. A., Lazzarini R. A. Aberrant splicing of proteolipid protein mRNA in the dysmyelinating jimpy mutant mouse. Proc Natl Acad Sci U S A. 1987 Mar;84(5):1454–1458. doi: 10.1073/pnas.84.5.1454. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ikenaka K., Furuichi T., Iwasaki Y., Moriguchi A., Okano H., Mikoshiba K. Myelin proteolipid protein gene structure and its regulation of expression in normal and jimpy mutant mice. J Mol Biol. 1988 Feb 20;199(4):587–596. doi: 10.1016/0022-2836(88)90303-8. [DOI] [PubMed] [Google Scholar]
- Kahan I., Moscarello M. A. Identification of membrane-embedded domains of lipophilin from human myelin. Biochemistry. 1985 Jan 15;24(2):538–544. doi: 10.1021/bi00323a044. [DOI] [PubMed] [Google Scholar]
- Lai C., Brow M. A., Nave K. A., Noronha A. B., Quarles R. H., Bloom F. E., Milner R. J., Sutcliffe J. G. Two forms of 1B236/myelin-associated glycoprotein, a cell adhesion molecule for postnatal neural development, are produced by alternative splicing. Proc Natl Acad Sci U S A. 1987 Jun;84(12):4337–4341. doi: 10.1073/pnas.84.12.4337. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laursen R. A., Samiullah M., Lees M. B. The structure of bovine brain myelin proteolipid and its organization in myelin. Proc Natl Acad Sci U S A. 1984 May;81(9):2912–2916. doi: 10.1073/pnas.81.9.2912. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lemke G., Axel R. Isolation and sequence of a cDNA encoding the major structural protein of peripheral myelin. Cell. 1985 Mar;40(3):501–508. doi: 10.1016/0092-8674(85)90198-9. [DOI] [PubMed] [Google Scholar]
- Macklin W. B., Gardinier M. V., King K. D., Kampf K. An AG----GG transition at a splice site in the myelin proteolipid protein gene in jimpy mice results in the removal of an exon. FEBS Lett. 1987 Nov 2;223(2):417–421. doi: 10.1016/0014-5793(87)80331-9. [DOI] [PubMed] [Google Scholar]
- Martini R., Schachner M. Immunoelectron microscopic localization of neural cell adhesion molecules (L1, N-CAM, and MAG) and their shared carbohydrate epitope and myelin basic protein in developing sciatic nerve. J Cell Biol. 1986 Dec;103(6 Pt 1):2439–2448. doi: 10.1083/jcb.103.6.2439. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mentaberry A., Adesnik M., Atchison M., Norgård E. M., Alvarez F., Sabatini D. D., Colman D. R. Small basic proteins of myelin from central and peripheral nervous systems are encoded by the same gene. Proc Natl Acad Sci U S A. 1986 Feb;83(4):1111–1114. doi: 10.1073/pnas.83.4.1111. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Milner R. J., Lai C., Nave K. A., Lenoir D., Ogata J., Sutcliffe J. G. Nucleotide sequences of two mRNAs for rat brain myelin proteolipid protein. Cell. 1985 Oct;42(3):931–939. doi: 10.1016/0092-8674(85)90289-2. [DOI] [PubMed] [Google Scholar]
- Molineaux S. M., Engh H., de Ferra F., Hudson L., Lazzarini R. A. Recombination within the myelin basic protein gene created the dysmyelinating shiverer mouse mutation. Proc Natl Acad Sci U S A. 1986 Oct;83(19):7542–7546. doi: 10.1073/pnas.83.19.7542. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morello D., Dautigny A., Pham-Dinh D., Jollès P. Myelin proteolipid protein (PLP and DM-20) transcripts are deleted in jimpy mutant mice. EMBO J. 1986 Dec 20;5(13):3489–3493. doi: 10.1002/j.1460-2075.1986.tb04674.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Naismith A. L., Hoffman-Chudzik E., Tsui L. C., Riordan J. R. Study of the expression of myelin proteolipid protein (lipophilin) using a cloned complementary DNA. Nucleic Acids Res. 1985 Oct 25;13(20):7413–7425. doi: 10.1093/nar/13.20.7413. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nave K. A., Bloom F. E., Milner R. J. A single nucleotide difference in the gene for myelin proteolipid protein defines the jimpy mutation in mouse. J Neurochem. 1987 Dec;49(6):1873–1877. doi: 10.1111/j.1471-4159.1987.tb02449.x. [DOI] [PubMed] [Google Scholar]
- Nave K. A., Lai C., Bloom F. E., Milner R. J. Jimpy mutant mouse: a 74-base deletion in the mRNA for myelin proteolipid protein and evidence for a primary defect in RNA splicing. Proc Natl Acad Sci U S A. 1986 Dec;83(23):9264–9268. doi: 10.1073/pnas.83.23.9264. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nave K. A., Lai C., Bloom F. E., Milner R. J. Splice site selection in the proteolipid protein (PLP) gene transcript and primary structure of the DM-20 protein of central nervous system myelin. Proc Natl Acad Sci U S A. 1987 Aug;84(16):5665–5669. doi: 10.1073/pnas.84.16.5665. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nussbaum J. L., Roussel G., Wünsch E., Jollès P. Site-specific antibodies to rat myelin proteolipids directed against the C-terminal hexapeptide. J Neurol Sci. 1985 Apr;68(1):89–100. doi: 10.1016/0022-510x(85)90052-8. [DOI] [PubMed] [Google Scholar]
- Pereyra P. M., Braun P. E., Greenfield S., Hogan E. L. Studies on subcellular fractions which are involved in myelin assembly: labeling of myelin proteins by a double radioisotope approach indicates developmental relationships. J Neurochem. 1983 Oct;41(4):974–988. doi: 10.1111/j.1471-4159.1983.tb09041.x. [DOI] [PubMed] [Google Scholar]
- Pereyra P. M., Braun P. E. Studies on subcellular fractions which are involved in myelin membrane assembly: isolation from developing mouse brain and characterization by enzyme markers, electron microscopy, and electrophoresis. J Neurochem. 1983 Oct;41(4):957–973. doi: 10.1111/j.1471-4159.1983.tb09040.x. [DOI] [PubMed] [Google Scholar]
- Pfeffer S. R., Rothman J. E. Biosynthetic protein transport and sorting by the endoplasmic reticulum and Golgi. Annu Rev Biochem. 1987;56:829–852. doi: 10.1146/annurev.bi.56.070187.004145. [DOI] [PubMed] [Google Scholar]
- Poduslo J. F., Braun P. E. Topographical arrangement of membrane proteins in the intact myelin sheath. Lactoperoxidase incorproation of iodine into myelin surface proteins. J Biol Chem. 1975 Feb 10;250(3):1099–1105. [PubMed] [Google Scholar]
- Privat A., Jacque C., Bourre J. M., Dupouey P., Baumann N. Absence of the major dense line in myelin of the mutant mouse "shiverer". Neurosci Lett. 1979 Apr;12(1):107–112. doi: 10.1016/0304-3940(79)91489-7. [DOI] [PubMed] [Google Scholar]
- Puckett C., Hudson L., Ono K., Friedrich V., Benecke J., Dubois-Dalcq M., Lazzarini R. A. Myelin-specific proteolipid protein is expressed in myelinating Schwann cells but is not incorporated into myelin sheaths. J Neurosci Res. 1987;18(4):511–518. doi: 10.1002/jnr.490180402. [DOI] [PubMed] [Google Scholar]
- Ranscht B., Clapshaw P. A., Price J., Noble M., Seifert W. Development of oligodendrocytes and Schwann cells studied with a monoclonal antibody against galactocerebroside. Proc Natl Acad Sci U S A. 1982 Apr;79(8):2709–2713. doi: 10.1073/pnas.79.8.2709. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roach A., Takahashi N., Pravtcheva D., Ruddle F., Hood L. Chromosomal mapping of mouse myelin basic protein gene and structure and transcription of the partially deleted gene in shiverer mutant mice. Cell. 1985 Aug;42(1):149–155. doi: 10.1016/s0092-8674(85)80110-0. [DOI] [PubMed] [Google Scholar]
- Roussel G., Neskovic N. M., Trifilieff E., Artault J. C., Nussbaum J. L. Arrest of proteolipid transport through the Golgi apparatus in Jimpy brain. J Neurocytol. 1987 Apr;16(2):195–204. doi: 10.1007/BF01795303. [DOI] [PubMed] [Google Scholar]
- Sabban E., Marchesi V., Adesnik M., Sabatini D. D. Erythrocyte membrane protein band 3: its biosynthesis and incorporation into membranes. J Cell Biol. 1981 Dec;91(3 Pt 1):637–646. doi: 10.1083/jcb.91.3.637. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Salzer J. L., Holmes W. P., Colman D. R. The amino acid sequences of the myelin-associated glycoproteins: homology to the immunoglobulin gene superfamily. J Cell Biol. 1987 Apr;104(4):957–965. doi: 10.1083/jcb.104.4.957. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Satoh J., Sakai K., Endoh M., Koike F., Kunishita T., Namikawa T., Yamamura T., Tabira T. Experimental allergic encephalomyelitis mediated by murine encephalitogenic T cell lines specific for myelin proteolipid apoprotein. J Immunol. 1987 Jan 1;138(1):179–184. [PubMed] [Google Scholar]
- Sayre R. T., Andersson B., Bogorad L. The topology of a membrane protein: the orientation of the 32 kd Qb-binding chloroplast thylakoid membrane protein. Cell. 1986 Nov 21;47(4):601–608. doi: 10.1016/0092-8674(86)90624-0. [DOI] [PubMed] [Google Scholar]
- Schofield P. R., Darlison M. G., Fujita N., Burt D. R., Stephenson F. A., Rodriguez H., Rhee L. M., Ramachandran J., Reale V., Glencorse T. A. Sequence and functional expression of the GABA A receptor shows a ligand-gated receptor super-family. Nature. 1987 Jul 16;328(6127):221–227. doi: 10.1038/328221a0. [DOI] [PubMed] [Google Scholar]
- Smith R., Braun P. E., Ferguson M. A., Low M. G., Sherman W. R. Direct measurement of inositol in bovine myelin basic protein. Biochem J. 1987 Nov 15;248(1):285–288. doi: 10.1042/bj2480285. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stoffel W., Hillen H., Giersiefen H. Structure and molecular arrangement of proteolipid protein of central nervous system myelin. Proc Natl Acad Sci U S A. 1984 Aug;81(16):5012–5016. doi: 10.1073/pnas.81.16.5012. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stoffel W., Hillen H., Schröder W., Deutzmann R. The primary structure of bovine brain myelin lipophilin (proteolipid apoprotein). Hoppe Seylers Z Physiol Chem. 1983 Oct;364(10):1455–1466. doi: 10.1515/bchm2.1983.364.2.1455. [DOI] [PubMed] [Google Scholar]
- Townsend L. E., Agrawal D., Benjamins J. A., Agrawal H. C. In vitro acylation of rat brain myelin proteolipid protein. J Biol Chem. 1982 Aug 25;257(16):9745–9750. [PubMed] [Google Scholar]
- Townsend L. E., Benjamins J. A. Effects of monensin on posttranslational processing of myelin proteins. J Neurochem. 1983 May;40(5):1333–1339. doi: 10.1111/j.1471-4159.1983.tb13575.x. [DOI] [PubMed] [Google Scholar]
- Trapp B. D., Quarles R. H. Immunocytochemical localization of the myelin-associated glycoprotein. Fact or artifact? J Neuroimmunol. 1984 Jul;6(4):231–249. doi: 10.1016/0165-5728(84)90011-0. [DOI] [PubMed] [Google Scholar]
- Trifilieff E., Luu B., Nussbaum J. L., Roussel G., Espinosa de los Monteros A., Sabatier J. M., Van Rietschoten J. A specific immunological probe for the major myelin proteolipid. Confirmation of a deletion in DM-20. FEBS Lett. 1986 Mar 31;198(2):235–239. doi: 10.1016/0014-5793(86)80412-4. [DOI] [PubMed] [Google Scholar]
- Wickner W. T., Lodish H. F. Multiple mechanisms of protein insertion into and across membranes. Science. 1985 Oct 25;230(4724):400–407. doi: 10.1126/science.4048938. [DOI] [PubMed] [Google Scholar]
- Williams R. M., Lees M. B., Cambi F., Macklin W. B. Chronic experimental allergic encephalomyelitis induced in rabbits with bovine white matter proteolipid apoprotein. J Neuropathol Exp Neurol. 1982 Sep;41(5):508–521. doi: 10.1097/00005072-198209000-00004. [DOI] [PubMed] [Google Scholar]
- Wood P., Okada E., Bunge R. The use of networks of dissociated rat dorsal root ganglion neurons to induce myelination by oligodencrocytes in culture. Brain Res. 1980 Aug 25;196(1):247–252. doi: 10.1016/0006-8993(80)90732-5. [DOI] [PubMed] [Google Scholar]
- Yang J. C., Chang P. C., Fujitaki J. M., Chiu K. C., Smith R. A. Colvalent linkage of phospholipid to myelin basic protein: identification of phosphatidylinositol bisphosphate as the attached phospholipid. Biochemistry. 1986 May 6;25(9):2677–2681. doi: 10.1021/bi00357a058. [DOI] [PubMed] [Google Scholar]
- Young E. F., Ralston E., Blake J., Ramachandran J., Hall Z. W., Stroud R. M. Topological mapping of acetylcholine receptor: evidence for a model with five transmembrane segments and a cytoplasmic COOH-terminal peptide. Proc Natl Acad Sci U S A. 1985 Jan;82(2):626–630. doi: 10.1073/pnas.82.2.626. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zeller N. K., Behar T. N., Dubois-Dalcq M. E., Lazzarini R. A. The timely expression of myelin basic protein gene in cultured rat brain oligodendrocytes is independent of continuous neuronal influences. J Neurosci. 1985 Nov;5(11):2955–2962. doi: 10.1523/JNEUROSCI.05-11-02955.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- da Silva P. P., Miller R. G. Membrane particles on fracture faces of frozen myelin. Proc Natl Acad Sci U S A. 1975 Oct;72(10):4046–4050. doi: 10.1073/pnas.72.10.4046. [DOI] [PMC free article] [PubMed] [Google Scholar]
- de Ferra F., Engh H., Hudson L., Kamholz J., Puckett C., Molineaux S., Lazzarini R. A. Alternative splicing accounts for the four forms of myelin basic protein. Cell. 1985 Dec;43(3 Pt 2):721–727. doi: 10.1016/0092-8674(85)90245-4. [DOI] [PubMed] [Google Scholar]
