Abstract
Monoclonal antibodies binding to distinct epitopes on the tail of brush border myosin were used to modulate the conformation and state of assembly of this myosin. BM1 binds 1:3 of the distance from the tip of the tail to the head and prevents the extended-tail (6S) monomer from folding into the assembly-incompetent folded-tail (10S) state, whereas BM4 binds to the tip of the myosin tail, and induces the myosin to fold into the 10S state. Thus, at physiological ionic strength BM1 promotes and BM4 blocks the assembly of the myosin into filaments. Using BM1 and BM4 together, we were able to prevent both folding and filament assembly, thus locking myosin molecules in the extended-tail 6S monomer conformation at low ionic strength where they normally assemble into filaments. Using these myosin-antibody complexes, we were able to investigate independently the effects of folding of the myosin tail and assembly into filaments on the myosin MgATPase. The enzymatic activities were measured from the fluorescent profiles during the turnover of the ATP analogue formycin triphosphate (FTP). Extended-tail (6S) myosin molecules had an FTPase activity of 1-5 X 10(-3) s-1, either at high ionic strength as a monomer alone or when complexed with antibody, or at low ionic strength as filaments or when maintained as extended-tail monomers by the binding of BM1 and BM4. Folding of the molecules into the 10S state reduced this rate by an order of magnitude, effectively trapping the products of FTP hydrolysis in the active sites.
Full Text
The Full Text of this article is available as a PDF (2.0 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Citi S., Kendrick-Jones J. Brush border myosin filament assembly and interaction with actin investigated with monoclonal antibodies. J Muscle Res Cell Motil. 1988 Aug;9(4):306–319. doi: 10.1007/BF01773874. [DOI] [PubMed] [Google Scholar]
- Citi S., Kendrick-Jones J. Regulation in vitro of brush border myosin by light chain phosphorylation. J Mol Biol. 1986 Apr 5;188(3):369–382. doi: 10.1016/0022-2836(86)90161-0. [DOI] [PubMed] [Google Scholar]
- Citi S., Kendrick-Jones J. Studies on the structure and conformation of brush border myosin using monoclonal antibodies. Eur J Biochem. 1987 Jun 1;165(2):315–325. doi: 10.1111/j.1432-1033.1987.tb11444.x. [DOI] [PubMed] [Google Scholar]
- Craig R., Smith R., Kendrick-Jones J. Light-chain phosphorylation controls the conformation of vertebrate non-muscle and smooth muscle myosin molecules. 1983 Mar 31-Apr 6Nature. 302(5907):436–439. doi: 10.1038/302436a0. [DOI] [PubMed] [Google Scholar]
- Cross R. A., Cross K. E., Sobieszek A. ATP-linked monomer-polymer equilibrium of smooth muscle myosin: the free folded monomer traps ADP.Pi. EMBO J. 1986 Oct;5(10):2637–2641. doi: 10.1002/j.1460-2075.1986.tb04545.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cross R. A., Jackson A. P., Citi S., Kendrick-Jones J., Bagshaw C. R. Active site trapping of nucleotide by smooth and non-muscle myosins. J Mol Biol. 1988 Sep 5;203(1):173–181. doi: 10.1016/0022-2836(88)90100-3. [DOI] [PubMed] [Google Scholar]
- Höner B., Citi S., Kendrick-Jones J., Jockusch B. M. Modulation of cellular morphology and locomotory activity by antibodies against myosin. J Cell Biol. 1988 Dec;107(6 Pt 1):2181–2189. doi: 10.1083/jcb.107.6.2181. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ikebe M., Hinkins S., Hartshorne D. J. Correlation of enzymatic properties and conformation of smooth muscle myosin. Biochemistry. 1983 Sep 13;22(19):4580–4587. doi: 10.1021/bi00288a036. [DOI] [PubMed] [Google Scholar]
- Jackson A. P., Bagshaw C. R. Kinetic trapping of intermediates of the scallop heavy meromyosin adenosine triphosphatase reaction revealed by formycin nucleotides. Biochem J. 1988 Apr 15;251(2):527–540. doi: 10.1042/bj2510527. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jackson A. P., Bagshaw C. R. Transient-kinetic studies of the adenosine triphosphatase activity of scallop heavy meromyosin. Biochem J. 1988 Apr 15;251(2):515–526. doi: 10.1042/bj2510515. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kendrick-Jones J., Smith R. C., Craig R., Citi S. Polymerization of vertebrate non-muscle and smooth muscle myosins. J Mol Biol. 1987 Nov 20;198(2):241–252. doi: 10.1016/0022-2836(87)90310-x. [DOI] [PubMed] [Google Scholar]
- Kendrick-Jones J., Tooth P., Taylor K. A., Scholey J. M. Regulation of myosin-filament assembly by light-chain phosphorylation. Cold Spring Harb Symp Quant Biol. 1982;46(Pt 2):929–938. doi: 10.1101/sqb.1982.046.01.087. [DOI] [PubMed] [Google Scholar]
- Kiehart D. P., Kaiser D. A., Pollard T. D. Direct localization of monoclonal antibody-binding sites on Acanthamoeba myosin-II and inhibition of filament formation by antibodies that bind to specific sites on the myosin-II tail. J Cell Biol. 1984 Sep;99(3):1015–1023. doi: 10.1083/jcb.99.3.1015. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kiehart D. P., Pollard T. D. Inhibition of acanthamoeba actomyosin-II ATPase activity and mechanochemical function by specific monoclonal antibodies. J Cell Biol. 1984 Sep;99(3):1024–1033. doi: 10.1083/jcb.99.3.1024. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Matsudaira P. T., Burgess D. R. SDS microslab linear gradient polyacrylamide gel electrophoresis. Anal Biochem. 1978 Jul 1;87(2):386–396. doi: 10.1016/0003-2697(78)90688-7. [DOI] [PubMed] [Google Scholar]
- Onishi H., Wakabayashi T. Electron microscopic studies of myosin molecules from chicken gizzard muscle I: the formation of the intramolecular loop in the myosin tail. J Biochem. 1982 Sep;92(3):871–879. doi: 10.1093/oxfordjournals.jbchem.a134001. [DOI] [PubMed] [Google Scholar]
- Onishi H., Watanabe S. Correlation between the papain digestibility and the conformation of 10s-myosin from chicken gizzard. J Biochem. 1984 Mar;95(3):899–902. doi: 10.1093/oxfordjournals.jbchem.a134685. [DOI] [PubMed] [Google Scholar]
- Pagh K., Gerisch G. Monoclonal antibodies binding to the tail of Dictyostelium discoideum myosin: their effects on antiparallel and parallel assembly and actin-activated ATPase activity. J Cell Biol. 1986 Oct;103(4):1527–1538. doi: 10.1083/jcb.103.4.1527. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schneider M. D., Sellers J. R., Vahey M., Preston Y. A., Adelstein R. S. Localization and topography of antigenic domains within the heavy chain of smooth muscle myosin. J Cell Biol. 1985 Jul;101(1):66–72. doi: 10.1083/jcb.101.1.66. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Scholey J. M., Smith R. C., Drenckhahn D., Groschel-Stewart U., Kendrick-Jones J. Thymus myosin. Isolation and characterization of myosin from calf thymus and thymic lymphocytes, and studies on the effect of phosphorylation of its Mr = 20,000 light chain. J Biol Chem. 1982 Jul 10;257(13):7737–7745. [PubMed] [Google Scholar]
- Trybus K. M., Huiatt T. W., Lowey S. A bent monomeric conformation of myosin from smooth muscle. Proc Natl Acad Sci U S A. 1982 Oct;79(20):6151–6155. doi: 10.1073/pnas.79.20.6151. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Trybus K. M., Lowey S. Conformational states of smooth muscle myosin. Effects of light chain phosphorylation and ionic strength. J Biol Chem. 1984 Jul 10;259(13):8564–8571. [PubMed] [Google Scholar]
- Winkelmann D. A., Lowey S. Probing myosin head structure with monoclonal antibodies. J Mol Biol. 1986 Apr 20;188(4):595–612. doi: 10.1016/s0022-2836(86)80009-2. [DOI] [PubMed] [Google Scholar]