Abstract
Cultured rat myotubes develop high concentrations of acetylcholine receptors (AChR) in specialized areas of attachment to their substrate. We examined the ultrastructure of identified AChR clusters by quick- freeze, deep-etch, rotary replication or by thin sectioning of whole myotubes fixed in the presence of saponin and tannic acid to preserve the cytoskeleton. Our findings show that AChR clusters are composed of at least three distinct domains, differing in their cytoskeletal, intramembrane, and external components. At contact domains, the myotube's ventral membrane lacked AChR and lay within 10-15 nm of the substrate; electron-dense strands connected the two. The overlying cytoplasm contained bundles of parallel microfilaments passing above and through an irregular network of globular material, resembling the relationship of microfilament bundles to focal contacts already described in fibroblasts. Coated-membrane domains lay between the microfilament bundles and were overlain by cytoplasmic plaques of a regular network of polygons having associated coated pits. These plaques closely resembled the network of polymerized clathrin described in fibroblasts and macrophages. Coated membrane also lacked AChR and adhered to the substrate by electron-dense strands, but did not anchor microfilament bundles. The cytoplasm overlying AChR domains contained a complex network composed of at least two layers. The layer closest to the membrane consisted of protrusions from the cytoplasmic surface, some connected by fine filaments less than 5 nm in diameter. An overlying layer contained larger diameter filaments, some forming an anastomotic network reminiscent of the cortical cytoskeleton of erythrocytes. Longer filaments inserting into this network appeared identical to members of nearby microfilament bundles. The morphology of AChR domains supports the idea that AChR are immobilized by a network containing actin and spectrin.
Full Text
The Full Text of this article is available as a PDF (9.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aggeler J., Takemura R., Werb Z. High-resolution three-dimensional views of membrane-associated clathrin and cytoskeleton in critical-point-dried macrophages. J Cell Biol. 1983 Nov;97(5 Pt 1):1452–1458. doi: 10.1083/jcb.97.5.1452. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Altman J. Coated vesicles and synaptogenesis. A developmental study in the cerebellar cortex of the rat. Brain Res. 1971 Jul 23;30(2):311–322. doi: 10.1016/0006-8993(71)90081-3. [DOI] [PubMed] [Google Scholar]
- Avnur Z., Geiger B. Substrate-attached membranes of cultured cells isolation and characterization of ventral cell membranes and the associated cytoskeleton. J Mol Biol. 1981 Dec 5;153(2):361–379. doi: 10.1016/0022-2836(81)90283-7. [DOI] [PubMed] [Google Scholar]
- Axelrod D., Ravdin P., Koppel D. E., Schlessinger J., Webb W. W., Elson E. L., Podleski T. R. Lateral motion of fluorescently labeled acetylcholine receptors in membranes of developing muscle fibers. Proc Natl Acad Sci U S A. 1976 Dec;73(12):4594–4598. doi: 10.1073/pnas.73.12.4594. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bennett V. The membrane skeleton of human erythrocytes and its implications for more complex cells. Annu Rev Biochem. 1985;54:273–304. doi: 10.1146/annurev.bi.54.070185.001421. [DOI] [PubMed] [Google Scholar]
- Bloch R. J. Actin at receptor-rich domains of isolated acetylcholine receptor clusters. J Cell Biol. 1986 Apr;102(4):1447–1458. doi: 10.1083/jcb.102.4.1447. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bloch R. J. Dispersal and reformation of acetylcholine receptor clusters of cultured rat myotubes treated with inhibitors of energy metabolism. J Cell Biol. 1979 Sep;82(3):626–643. doi: 10.1083/jcb.82.3.626. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bloch R. J., Geiger B. The localization of acetylcholine receptor clusters in areas of cell-substrate contact in cultures of rat myotubes. Cell. 1980 Aug;21(1):25–35. doi: 10.1016/0092-8674(80)90111-7. [DOI] [PubMed] [Google Scholar]
- Bloch R. J., Morrow J. S. An unusual beta-spectrin associated with clustered acetylcholine receptors. J Cell Biol. 1989 Feb;108(2):481–493. doi: 10.1083/jcb.108.2.481. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bloch R. J., Pumplin D. W. Molecular events in synaptogenesis: nerve-muscle adhesion and postsynaptic differentiation. Am J Physiol. 1988 Mar;254(3 Pt 1):C345–C364. doi: 10.1152/ajpcell.1988.254.3.C345. [DOI] [PubMed] [Google Scholar]
- Bridgman P. C., Carr C., Pedersen S. E., Cohen J. B. Visualization of the cytoplasmic surface of Torpedo postsynaptic membranes by freeze-etch and immunoelectron microscopy. J Cell Biol. 1987 Oct;105(4):1829–1846. doi: 10.1083/jcb.105.4.1829. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burridge K., Fath K., Kelly T., Nuckolls G., Turner C. Focal adhesions: transmembrane junctions between the extracellular matrix and the cytoskeleton. Annu Rev Cell Biol. 1988;4:487–525. doi: 10.1146/annurev.cb.04.110188.002415. [DOI] [PubMed] [Google Scholar]
- Cohen S. A., Pumplin D. W. Clusters of intramembrane particles associated with binding sites for alpha-bungarotoxin in cultured chick myotubes. J Cell Biol. 1979 Aug;82(2):494–516. doi: 10.1083/jcb.82.2.494. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dlugosz A. A., Antin P. B., Nachmias V. T., Holtzer H. The relationship between stress fiber-like structures and nascent myofibrils in cultured cardiac myocytes. J Cell Biol. 1984 Dec;99(6):2268–2278. doi: 10.1083/jcb.99.6.2268. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Farquhar M. G. Progress in unraveling pathways of Golgi traffic. Annu Rev Cell Biol. 1985;1:447–488. doi: 10.1146/annurev.cb.01.110185.002311. [DOI] [PubMed] [Google Scholar]
- Geiger B. Membrane-cytoskeleton interaction. Biochim Biophys Acta. 1983 Aug 11;737(3-4):305–341. doi: 10.1016/0304-4157(83)90005-9. [DOI] [PubMed] [Google Scholar]
- Goldstein J. L., Anderson R. G., Brown M. S. Coated pits, coated vesicles, and receptor-mediated endocytosis. Nature. 1979 Jun 21;279(5715):679–685. doi: 10.1038/279679a0. [DOI] [PubMed] [Google Scholar]
- Heath J. P., Dunn G. A. Cell to substratum contacts of chick fibroblasts and their relation to the microfilament system. A correlated interference-reflexion and high-voltage electron-microscope study. J Cell Sci. 1978 Feb;29:197–212. doi: 10.1242/jcs.29.1.197. [DOI] [PubMed] [Google Scholar]
- Heuser J. E., Kirschner M. W. Filament organization revealed in platinum replicas of freeze-dried cytoskeletons. J Cell Biol. 1980 Jul;86(1):212–234. doi: 10.1083/jcb.86.1.212. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heuser J. Three-dimensional visualization of coated vesicle formation in fibroblasts. J Cell Biol. 1980 Mar;84(3):560–583. doi: 10.1083/jcb.84.3.560. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hirokawa N., Heuser J. E. Internal and external differentiations of the postsynaptic membrane at the neuromuscular junction. J Neurocytol. 1982 Jun;11(3):487–510. doi: 10.1007/BF01257990. [DOI] [PubMed] [Google Scholar]
- Larkin J. M., Donzell W. C., Anderson R. G. Potassium-dependent assembly of coated pits: new coated pits form as planar clathrin lattices. J Cell Biol. 1986 Dec;103(6 Pt 2):2619–2627. doi: 10.1083/jcb.103.6.2619. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liu S. C., Derick L. H., Palek J. Visualization of the hexagonal lattice in the erythrocyte membrane skeleton. J Cell Biol. 1987 Mar;104(3):527–536. doi: 10.1083/jcb.104.3.527. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maupin P., Pollard T. D. Improved preservation and staining of HeLa cell actin filaments, clathrin-coated membranes, and other cytoplasmic structures by tannic acid-glutaraldehyde-saponin fixation. J Cell Biol. 1983 Jan;96(1):51–62. doi: 10.1083/jcb.96.1.51. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nicol A., Nermut M. V. A new type of substratum adhesion structure in NRK cells revealed by correlated interference reflection and electron microscopy. Eur J Cell Biol. 1987 Jun;43(3):348–357. [PubMed] [Google Scholar]
- Pardo J. V., Siliciano J. D., Craig S. W. Vinculin is a component of an extensive network of myofibril-sarcolemma attachment regions in cardiac muscle fibers. J Cell Biol. 1983 Oct;97(4):1081–1088. doi: 10.1083/jcb.97.4.1081. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peng H. B., Phelan K. A. Early cytoplasmic specialization at the presumptive acetylcholine receptor cluster: a meshwork of thin filaments. J Cell Biol. 1984 Jul;99(1 Pt 1):344–349. doi: 10.1083/jcb.99.1.344. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peng H. B., Wolosewick J. J., Cheng P. C. The development of myofibrils in cultured muscle cells: a whole-mount and thin-section electron microscopic study. Dev Biol. 1981 Nov;88(1):121–136. doi: 10.1016/0012-1606(81)90224-4. [DOI] [PubMed] [Google Scholar]
- Pumplin D. W., Bloch R. J. Disruption and reformation of the acetylcholine receptor clusters of cultured rat myotubes occur in two distinct stages. J Cell Biol. 1987 Jan;104(1):97–108. doi: 10.1083/jcb.104.1.97. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pumplin D. W., Drachman D. B. Myasthenic patients' IgG causes redistribution of acetylcholine receptors: freeze-fracture studies. J Neurosci. 1983 Mar;3(3):576–584. doi: 10.1523/JNEUROSCI.03-03-00576.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rees R. P., Bunge M. B., Bunge R. P. Morphological changes in the neuritic growth cone and target neuron during synaptic junction development in culture. J Cell Biol. 1976 Feb;68(2):240–263. doi: 10.1083/jcb.68.2.240. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shear C. R., Bloch R. J. Vinculin in subsarcolemmal densities in chicken skeletal muscle: localization and relationship to intracellular and extracellular structures. J Cell Biol. 1985 Jul;101(1):240–256. doi: 10.1083/jcb.101.1.240. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Small J. V., Isenberg G., Celis J. E. Polarity of actin at the leading edge of cultured cells. Nature. 1978 Apr 13;272(5654):638–639. doi: 10.1038/272638a0. [DOI] [PubMed] [Google Scholar]
- Tsukita S., Tsukita S., Ishikawa H. Cytoskeletal network underlying the human erythrocyte membrane. Thin-section electron microscopy. J Cell Biol. 1980 Jun;85(3):567–576. doi: 10.1083/jcb.85.3.567. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Walzthöny D., Eppenberger H. M., Wallimann T. Shadowing of elongated helical molecules (myosin, tropomyosin, collagen, and DNA) yields regular molecule-dependent heavy metal grain patterns. Eur J Cell Biol. 1984 Nov;35(2):216–225. [PubMed] [Google Scholar]
- Woodrum D. T., Rich S. A., Pollard T. D. Evidence for biased bidirectional polymerization of actin filaments using heavy meromyosin prepared by an improved method. J Cell Biol. 1975 Oct;67(1):231–237. doi: 10.1083/jcb.67.1.231. [DOI] [PMC free article] [PubMed] [Google Scholar]
