Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1989 Sep 1;109(3):1257–1267. doi: 10.1083/jcb.109.3.1257

Novel alpha-D-mannosidase of rat sperm plasma membranes: characterization and potential role in sperm-egg interactions

PMCID: PMC2115747  PMID: 2768341

Abstract

During the course of a study of glycoprotein processing mannosidases in the rat epididymis, we have made an intriguing discovery regarding the presence of a novel alpha-D-mannosidase on the rat sperm plasma membranes. Unlike the sperm acrosomal "acid" mannosidase which has a pH optimum of 4.4, the newly discovered alpha-D-mannosidase has a pH optimum of 6.2, and 6.5 when assayed in sperm plasma membranes and intact spermatozoa, respectively. In addition, the two enzymes show different substrate specificity. The acrosomal alpha-D-mannosidase is active mainly towards synthetic substrate, p-nitrophenyl alpha-D- mannopyranoside, whereas the sperm plasma membrane alpha-D-mannosidase shows activity mainly towards mannose-containing oligosaccharides. Evidence is presented which suggest that the sperm plasma membrane alpha-D-mannosidase is different from several processing mannosidases previously characterized from the rat liver. The newly discovered alpha- D-mannosidase appears to be an intrinsic plasma membrane component, since washing of the purified membranes with buffered 0.4 M NaCl did not release the enzyme in soluble form. The enzyme requires nonionic detergent (Triton X-100) for complete solubilization. The enzyme is activated by Co2+ and Mn2+. However, Cu2+ and Zn2+ are potent inhibitors of the sperm plasma membrane alpha-D-mannosidase. At a concentration of 0.1 mM, these divalent cations caused nearly complete inactivation of the sperm enzyme. In addition methyl-alpha-D-mannoside, methyl-alpha-D-glucoside, mannose, 2-deoxy-D-glucose, and D-mannosamine are inhibitors of the sperm surface alpha-D-mannosidase. The physiological role of the newly discovered enzyme is not yet known. Several published reports in three species, including the rat, suggest that the sperm surface alpha-D-mannosidase may have a role in binding to mannose-containing saccharides presumably present on the zona pellucida.

Full Text

The Full Text of this article is available as a PDF (2.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahuja K. K. Carbohydrate determinants involved in mammalian fertilization. Am J Anat. 1985 Nov;174(3):207–223. doi: 10.1002/aja.1001740304. [DOI] [PubMed] [Google Scholar]
  2. Anderson P. M., Desnick R. J. Purification and properties of delta-aminolevulinate dehydrase from human erythrocytes. J Biol Chem. 1979 Aug 10;254(15):6924–6930. [PubMed] [Google Scholar]
  3. Benau D. A., Storey B. T. Relationship between two types of mouse sperm surface sites that mediate binding of sperm to the zona pellucida. Biol Reprod. 1988 Sep;39(2):235–244. doi: 10.1095/biolreprod39.2.235. [DOI] [PubMed] [Google Scholar]
  4. Bischoff J., Kornfeld R. Evidence for an alpha-mannosidase in endoplasmic reticulum of rat liver. J Biol Chem. 1983 Jul 10;258(13):7907–7910. [PubMed] [Google Scholar]
  5. Bischoff J., Kornfeld R. The soluble form of rat liver alpha-mannosidase is immunologically related to the endoplasmic reticulum membrane alpha-mannosidase. J Biol Chem. 1986 Apr 5;261(10):4758–4765. [PubMed] [Google Scholar]
  6. Bleil J. D., Wassarman P. M. Autoradiographic visualization of the mouse egg's sperm receptor bound to sperm. J Cell Biol. 1986 Apr;102(4):1363–1371. doi: 10.1083/jcb.102.4.1363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bleil J. D., Wassarman P. M. Galactose at the nonreducing terminus of O-linked oligosaccharides of mouse egg zona pellucida glycoprotein ZP3 is essential for the glycoprotein's sperm receptor activity. Proc Natl Acad Sci U S A. 1988 Sep;85(18):6778–6782. doi: 10.1073/pnas.85.18.6778. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bleil J. D., Wassarman P. M. Synthesis of zona pellucida proteins by denuded and follicle-enclosed mouse oocytes during culture in vitro. Proc Natl Acad Sci U S A. 1980 Feb;77(2):1029–1033. doi: 10.1073/pnas.77.2.1029. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Brown C. R., Jones R. Binding of zona pellucida proteins to a boar sperm polypeptide of Mr 53,000 and identification of zona moieties involved. Development. 1987 Mar;99(3):333–339. doi: 10.1242/dev.99.3.333. [DOI] [PubMed] [Google Scholar]
  10. Carubelli R., Tulsiani D. R. Neuraminidase activity in brain and liver of rats during development. Biochim Biophys Acta. 1971 Apr 20;237(1):78–87. doi: 10.1016/0304-4165(71)90032-8. [DOI] [PubMed] [Google Scholar]
  11. Durr R., Shur B., Roth S. Sperm-associated sialyltransferase activity. Nature. 1977 Feb 10;265(5594):547–548. doi: 10.1038/265547a0. [DOI] [PubMed] [Google Scholar]
  12. Florman H. M., Wassarman P. M. O-linked oligosaccharides of mouse egg ZP3 account for its sperm receptor activity. Cell. 1985 May;41(1):313–324. doi: 10.1016/0092-8674(85)90084-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Forsee W. T., Schutzbach J. S. Purification and characterization of a phospholipid-dependent alpha-mannosidase from rabbit liver. J Biol Chem. 1981 Jul 10;256(13):6577–6582. [PubMed] [Google Scholar]
  14. Fuhrmann U., Bause E., Legler G., Ploegh H. Novel mannosidase inhibitor blocking conversion of high mannose to complex oligosaccharides. Nature. 1984 Feb 23;307(5953):755–758. doi: 10.1038/307755a0. [DOI] [PubMed] [Google Scholar]
  15. Hyne R. V., Garbers D. L. Regulation of guinea pig sperm adenylate cyclase by calcium. Biol Reprod. 1979 Dec;21(5):1135–1142. doi: 10.1095/biolreprod21.5.1135. [DOI] [PubMed] [Google Scholar]
  16. Jauhiainen A., Vanha-Perttula T. Characterization of acid and neutral alpha-mannosidases in bull semen and reproductive organs. Int J Biochem. 1987;19(3):267–274. doi: 10.1016/0020-711x(87)90030-9. [DOI] [PubMed] [Google Scholar]
  17. Lambert H. Role of sperm-surface glycoproteins in gamete recognition in two mouse species. J Reprod Fertil. 1984 Jan;70(1):281–284. doi: 10.1530/jrf.0.0700281. [DOI] [PubMed] [Google Scholar]
  18. Macek M. B., Shur B. D. Protein-carbohydrate complementarity in mammalian gamete recognition. Gamete Res. 1988 May;20(1):93–109. doi: 10.1002/mrd.1120200109. [DOI] [PubMed] [Google Scholar]
  19. Novikoff P. M., Tulsiani D. R., Touster O., Yam A., Novikoff A. B. Immunocytochemical localization of alpha-D-mannosidase II in the Golgi apparatus of rat liver. Proc Natl Acad Sci U S A. 1983 Jul;80(14):4364–4368. doi: 10.1073/pnas.80.14.4364. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. O'Rand M. G. Sperm-egg recognition and barriers to interspecies fertilization. Gamete Res. 1988 Apr;19(4):315–328. doi: 10.1002/mrd.1120190402. [DOI] [PubMed] [Google Scholar]
  21. Oikawa T., Nicolson G. L., Yanagimachi R. Inhibition of hamster fertilization by phytoagglutinins. Exp Cell Res. 1974 Feb;83(2):239–246. doi: 10.1016/0014-4827(74)90335-8. [DOI] [PubMed] [Google Scholar]
  22. Olson G. E., Lifsics M. R., Winfrey V. P., Rifkin J. M. Modification of the rat sperm flagellar plasma membrane during maturation in the epididymis. J Androl. 1987 May-Jun;8(3):129–147. doi: 10.1002/j.1939-4640.1987.tb02424.x. [DOI] [PubMed] [Google Scholar]
  23. Opheim D. J., Touster O. Lysosomal alpha-D-mannosidase of rat liver. Purification and comparison with the golgi and cytosolic alpha-D-mannosidases. J Biol Chem. 1978 Feb 25;253(4):1017–1023. [PubMed] [Google Scholar]
  24. Osawa T., Tsuji T. Fractionation and structural assessment of oligosaccharides and glycopeptides by use of immobilized lectins. Annu Rev Biochem. 1987;56:21–42. doi: 10.1146/annurev.bi.56.070187.000321. [DOI] [PubMed] [Google Scholar]
  25. Ram P. A., Cardullo R. A., Millette C. F. Expression and topographical localization of cell surface fucosyltransferase activity during epididymal sperm maturation in the mouse. Gamete Res. 1989 Mar;22(3):321–332. doi: 10.1002/mrd.1120220309. [DOI] [PubMed] [Google Scholar]
  26. Saling P. M. Involvement of trypsin-like activity in binding of mouse spermatozoa to zonae pellucidae. Proc Natl Acad Sci U S A. 1981 Oct;78(10):6231–6235. doi: 10.1073/pnas.78.10.6231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Schweden J., Legler G., Bause E. Purification and characterization of a neutral processing mannosidase from calf liver acting on (Man)9(GlcNAc)2 oligosaccharides. Eur J Biochem. 1986 Jun 16;157(3):563–570. doi: 10.1111/j.1432-1033.1986.tb09703.x. [DOI] [PubMed] [Google Scholar]
  28. Shalgi R., Matityahu A., Nebel L. The role of carbohydrates in sperm-egg interaction in rats. Biol Reprod. 1986 Apr;34(3):446–452. doi: 10.1095/biolreprod34.3.446. [DOI] [PubMed] [Google Scholar]
  29. Shoup V. A., Touster O. Purification and characterization of the alpha-D-mannosidase of rat liver cytosol. J Biol Chem. 1976 Jul 10;251(13):3845–3852. [PubMed] [Google Scholar]
  30. Skudlarek M. D., Orgebin-Crist M. C. Effect of swainsonine on rat epididymal glycosidases. J Reprod Fertil. 1988 Nov;84(2):611–617. doi: 10.1530/jrf.0.0840611. [DOI] [PubMed] [Google Scholar]
  31. Tabas I., Kornfeld S. Purification and characterization of a rat liver Golgi alpha-mannosidase capable of processing asparagine-linked oligosaccharides. J Biol Chem. 1979 Nov 25;254(22):11655–11663. [PubMed] [Google Scholar]
  32. Tulsiani D. R., Broquist H. P., James L. F., Touster O. Production of hybrid glycoproteins and accumulation of oligosaccharides in the brain of sheep and pigs administered swainsonine or locoweed. Arch Biochem Biophys. 1988 Aug 1;264(2):607–617. doi: 10.1016/0003-9861(88)90327-x. [DOI] [PubMed] [Google Scholar]
  33. Tulsiani D. R., Buschiazzo H. O., Tolbert B., Touster O. Changes in plasma hydrolase activities in hereditary and streptozotocin-induced diabetes. Arch Biochem Biophys. 1977 May;181(1):216–227. doi: 10.1016/0003-9861(77)90500-8. [DOI] [PubMed] [Google Scholar]
  34. Tulsiani D. R., Coleman V. D., Touster O. Rat epididymal alpha-D-mannosidase: purification, carbohydrate composition, substrate specificity, and antibody production. Arch Biochem Biophys. 1988 Nov 15;267(1):60–68. doi: 10.1016/0003-9861(88)90008-2. [DOI] [PubMed] [Google Scholar]
  35. Tulsiani D. R., Harris T. M., Touster O. Swainsonine inhibits the biosynthesis of complex glycoproteins by inhibition of Golgi mannosidase II. J Biol Chem. 1982 Jul 25;257(14):7936–7939. [PubMed] [Google Scholar]
  36. Tulsiani D. R., Hubbard S. C., Robbins P. W., Touster O. alpha-D-Mannosidases of rat liver Golgi membranes. Mannosidase II is the GlcNAcMAN5-cleaving enzyme in glycoprotein biosynthesis and mannosidases Ia and IB are the enzymes converting Man9 precursors to Man5 intermediates. J Biol Chem. 1982 Apr 10;257(7):3660–3668. [PubMed] [Google Scholar]
  37. Tulsiani D. R., Touster O. Characterization of a novel alpha-D-mannosidase from rat brain microsomes. J Biol Chem. 1985 Oct 25;260(24):13081–13087. [PubMed] [Google Scholar]
  38. Tulsiani D. R., Touster O. Substrate specificities of rat kidney lysosomal and cytosolic alpha-D-mannosidases and effects of swainsonine suggest a role of the cytosolic enzyme in glycoprotein catabolism. J Biol Chem. 1987 May 15;262(14):6506–6514. [PubMed] [Google Scholar]
  39. Tulsiani D. R., Touster O. Swainsonine causes the production of hybrid glycoproteins by human skin fibroblasts and rat liver Golgi preparations. J Biol Chem. 1983 Jun 25;258(12):7578–7585. [PubMed] [Google Scholar]
  40. Tulsiani D. R., Touster O. The purification and characterization of mannosidase IA from rat liver Golgi membranes. J Biol Chem. 1988 Apr 15;263(11):5408–5417. [PubMed] [Google Scholar]
  41. Wassarman P. M. Early events in mammalian fertilization. Annu Rev Cell Biol. 1987;3:109–142. doi: 10.1146/annurev.cb.03.110187.000545. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES