Abstract
The expression of mRNAs for the RI alpha, RII alpha, and C alpha subunits of cAMP-dependent protein kinase has been studied in different ram germ cells. The sizes of the specific RI alpha, RII alpha, and C alpha mRNAs, observed in germ cells were 1.6, 2.0, and 2.6 kb, respectively. RI alpha and C alpha mRNAs were mainly expressed in primary spermatocytes. A postmeiotic expression predominating in early spermatids was unique to RII alpha mRNA. The location of RI, RII alpha, and C subunits in well-defined organelles of ram spermatids and epididymal sperm was assessed by immunogold electron microscopy. In spermatids, RI, RII alpha, and C were essentially present in the forming acrosome and, to a lesser extent, in the nucleus. During sperm epididymal maturation, the protein kinases disappeared from the acrosome and were detected in a variety of sperm functional areas, such as the tip of the acrosome, the motility apparatus, and the membrane network. The present study on subunits of cAMP-dependent protein kinase supports the concept that specific functions are attached to the different subunits in that it shows differential expression and differential subcellular localization in germ cells.
Full Text
The Full Text of this article is available as a PDF (6.7 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Atherton R. W., Khatoon S., Schoff P. K., Haley B. E. A study of rat epididymal sperm adenosine 3',5'-monophosphate-dependent protein kinases: maturation differences and cellular location. Biol Reprod. 1985 Feb;32(1):155–171. doi: 10.1095/biolreprod32.1.155. [DOI] [PubMed] [Google Scholar]
- Conti M., Adamo S., Geremia R., Monesi V. Developmental changes of cyclic adenosine monophosphate-dependent protein kinase activity during spermatogenesis in the mouse. Biol Reprod. 1983 May;28(4):860–869. doi: 10.1095/biolreprod28.4.860. [DOI] [PubMed] [Google Scholar]
- Dadoune J. P., Fain-Maurel M. A., Alfonsi M. F., Katsanis G. In vivo and in vitro radioautographic investigation of amino acid incorporation into male germ cells. Biol Reprod. 1981 Feb;24(1):153–162. doi: 10.1095/biolreprod24.1.153. [DOI] [PubMed] [Google Scholar]
- De Camilli P., Moretti M., Donini S. D., Walter U., Lohmann S. M. Heterogeneous distribution of the cAMP receptor protein RII in the nervous system: evidence for its intracellular accumulation on microtubules, microtubule-organizing centers, and in the area of the Golgi complex. J Cell Biol. 1986 Jul;103(1):189–203. doi: 10.1083/jcb.103.1.189. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Demaille J. G., Peters K. A., Fischer E. H. Isolation and properties of the rabbit skeletal muscle protein inhibitor of adenosine 3',5'-monophosphate dependent protein kinases. Biochemistry. 1977 Jul 12;16(14):3080–3086. doi: 10.1021/bi00633a006. [DOI] [PubMed] [Google Scholar]
- Dills W. L., Goodwin C. D., Lincoln T. M., Beavo J. A., Bechtel P. J., Corbin J. D., Krebs E. G. Purification of cyclic nucleotide receptor proteins by cyclic nucleotide affinity chromatography. Adv Cyclic Nucleotide Res. 1979;10:199–217. [PubMed] [Google Scholar]
- Feinberg J., Pariset C., Rondard M., Loir M., Lanneau M., Weinman S., Demaille J. Evolution of Ca2+- and cAMP-dependent regulatory mechanisms during ram spermatogenesis. Dev Biol. 1983 Nov;100(1):260–265. doi: 10.1016/0012-1606(83)90220-8. [DOI] [PubMed] [Google Scholar]
- Garbers D. L., First N. L., Lardy H. A. Properties of adenosine 3',5'-monophosphate-dependent protein kinases isolated from bovine epididymal spermatozoa. J Biol Chem. 1973 Feb 10;248(3):875–879. [PubMed] [Google Scholar]
- Horowitz J. A., Toeg H., Orr G. A. Characterization and localization of cAMP-dependent protein kinases in rat caudal epididymal sperm. J Biol Chem. 1984 Jan 25;259(2):832–838. [PubMed] [Google Scholar]
- Horowitz J. A., Wasco W., Leiser M., Orr G. A. Interaction of the regulatory subunit of a type II cAMP-dependent protein kinase with mammalian sperm flagellum. J Biol Chem. 1988 Feb 5;263(4):2098–2104. [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lieberman S. J., Wasco W., MacLeod J., Satir P., Orr G. A. Immunogold localization of the regulatory subunit of a type II cAMP-dependent protein kinase tightly associated with mammalian sperm flagella. J Cell Biol. 1988 Nov;107(5):1809–1816. doi: 10.1083/jcb.107.5.1809. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lohmann S. M., Walter U., Greengard P. Identification of endogenous substrate proteins for cAMP-dependent protein kinase in bovine brain. J Biol Chem. 1980 Oct 25;255(20):9985–9992. [PubMed] [Google Scholar]
- Maldonado F., Hanks S. K. A cDNA clone encoding human cAMP-dependent protein kinase catalytic subunit C alpha. Nucleic Acids Res. 1988 Aug 25;16(16):8189–8190. doi: 10.1093/nar/16.16.8189. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nigg E. A., Schäfer G., Hilz H., Eppenberger H. M. Cyclic-AMP-dependent protein kinase type II is associated with the Golgi complex and with centrosomes. Cell. 1985 Jul;41(3):1039–1051. doi: 10.1016/s0092-8674(85)80084-2. [DOI] [PubMed] [Google Scholar]
- Noland T. D., Corbin J. D., Garbers D. L. Cyclic AMP-dependent protein kinase isozymes of bovine epididymal spermatozoa: evidence against the existence of an ectokinase. Biol Reprod. 1986 May;34(4):681–689. doi: 10.1095/biolreprod34.4.681. [DOI] [PubMed] [Google Scholar]
- Oyen O., Frøysa A., Sandberg M., Eskild W., Joseph D., Hansson V., Jahnsen T. Cellular localization and age-dependent changes in mRNA for cyclic adenosine 3',5'-monophosphate-dependent protein kinases in rat testis. Biol Reprod. 1987 Nov;37(4):947–956. doi: 10.1095/biolreprod37.4.947. [DOI] [PubMed] [Google Scholar]
- Oyen O., Scott J. D., Cadd G. G., McKnight G. S., Krebs E. G., Hansson V., Jahnsen T. A unique mRNA species for a regulatory subunit of cAMP-dependent protein kinase is specifically induced in haploid germ cells. FEBS Lett. 1988 Mar 14;229(2):391–394. doi: 10.1016/0014-5793(88)81163-3. [DOI] [PubMed] [Google Scholar]
- Pariset C. C., Feinberg J. M., Dacheux J. L., Weinman S. J. Changes in calmodulin level and cAMP-dependent protein kinase activity during epididymal maturation of ram spermatozoa. J Reprod Fertil. 1985 May;74(1):105–112. doi: 10.1530/jrf.0.0740105. [DOI] [PubMed] [Google Scholar]
- Paupard M. C., MacLeod J., Wasco W., Orr G. A. Major 56,000-dalton, soluble phosphoprotein present in bovine sperm is the regulatory subunit of a type II cAMP-dependent protein kinase. J Cell Biochem. 1988 Jun;37(2):161–175. doi: 10.1002/jcb.240370204. [DOI] [PubMed] [Google Scholar]
- Rannels S. R., Beasley A., Corbin J. D. Regulatory subunits of bovine heart and rabbit skeletal muscle cAMP-dependent protein kinase isozymes. Methods Enzymol. 1983;99:55–62. doi: 10.1016/0076-6879(83)99040-7. [DOI] [PubMed] [Google Scholar]
- Robinson-Steiner A. M., Beebe S. J., Rannels S. R., Corbin J. D. Microheterogeneity of type II cAMP-dependent protein kinase in various mammalian species and tissues. J Biol Chem. 1984 Aug 25;259(16):10596–10605. [PubMed] [Google Scholar]
- Sandberg M., Taskén K., Oyen O., Hansson V., Jahnsen T. Molecular cloning, cDNA structure and deduced amino acid sequence for a type I regulatory subunit of cAMP-dependent protein kinase from human testis. Biochem Biophys Res Commun. 1987 Dec 31;149(3):939–945. doi: 10.1016/0006-291x(87)90499-2. [DOI] [PubMed] [Google Scholar]
- Schwoch G., Hamann A., Hilz H. Antiserum against the catalytic subunit of adenosine 3':5'-cyclic monophosphate-dependent protein kinase. Reactivity towards various protein kinases. Biochem J. 1980 Oct 15;192(1):223–230. doi: 10.1042/bj1920223. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tash J. S., Hidaka H., Means A. R. Axokinin phosphorylation by cAMP-dependent protein kinase is sufficient for activation of sperm flagellar motility. J Cell Biol. 1986 Aug;103(2):649–655. doi: 10.1083/jcb.103.2.649. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tash J. S., Kakar S. S., Means A. R. Flagellar motility requires the cAMP-dependent phosphorylation of a heat-stable NP-40-soluble 56 kd protein, axokinin. Cell. 1984 Sep;38(2):551–559. doi: 10.1016/0092-8674(84)90509-9. [DOI] [PubMed] [Google Scholar]
- Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weinman S., Ores-Carton C., Escaig F., Feinberg J., Puszkin S. Calmodulin immunoelectron microscopy: redistribution during ram spermatogenesis and epididymal maturation. II. J Histochem Cytochem. 1986 Sep;34(9):1181–1193. doi: 10.1177/34.9.3734420. [DOI] [PubMed] [Google Scholar]
- Weinman S., Ores-Carton C., Rainteau D., Puszkin S. Immunoelectron microscopic localization of calmodulin and phospholipase A2 in spermatozoa. I. J Histochem Cytochem. 1986 Sep;34(9):1171–1179. doi: 10.1177/34.9.2426345. [DOI] [PubMed] [Google Scholar]