Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1989 Sep 1;109(3):1229–1243. doi: 10.1083/jcb.109.3.1229

Evidence that calcium may control neurite outgrowth by regulating the stability of actin filaments

PMCID: PMC2115760  PMID: 2504729

Abstract

We investigated the effects of calcium removal and calcium ionophores on the behavior and ultrastructure of cultured chick dorsal root ganglia (DRG) neurons to identify possible mechanisms by which calcium might regulate neurite outgrowth. Both calcium removal and the addition of calcium ionophores A23187 or ionomycin blocked outgrowth in previously elongating neurites, although in the case of calcium ionophores, changes in growth cone shape and retraction of neurites were also observed. Treatment with calcium ionophores significantly increased growth cone calcium. The ability of the microtubule stabilizing agent taxol to block A23187-induced neurite retraction and the ability of the actin stabilizing agent phalloidin to reverse both A23187-induced growth cone collapse and neurite retraction suggested that calcium acted on the cytoskeleton. Whole mount electron micrographs revealed an apparent disruption of actin filaments in the periphery (but not filopodia) of growth cones that were exposed to calcium ionophores in medium with normal calcium concentrations. This effect was not seen in cells treated with calcium ionophores in calcium- free medium or cells treated with the monovalent cation ionophore monensin, indicating that these effects were calcium specific. Ultrastructure of Triton X-100 extracted whole mounts further indicated that both microtubules and microfilaments may be more stable or extraction resistant after treatments which lower intracellular calcium. Taken together, the data suggest that calcium may control neurite elongation at least in part by regulating actin filament stability, and support a model for neurite outgrowth involving a balance between assembly and disassembly of the cytoskeleton.

Full Text

The Full Text of this article is available as a PDF (5.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anglister L., Farber I. C., Shahar A., Grinvald A. Localization of voltage-sensitive calcium channels along developing neurites: their possible role in regulating neurite elongation. Dev Biol. 1982 Dec;94(2):351–365. doi: 10.1016/0012-1606(82)90353-0. [DOI] [PubMed] [Google Scholar]
  2. Augustine G. J., Charlton M. P., Smith S. J. Calcium action in synaptic transmitter release. Annu Rev Neurosci. 1987;10:633–693. doi: 10.1146/annurev.ne.10.030187.003221. [DOI] [PubMed] [Google Scholar]
  3. Bamburg J. R., Bray D., Chapman K. Assembly of microtubules at the tip of growing axons. Nature. 1986 Jun 19;321(6072):788–790. doi: 10.1038/321788a0. [DOI] [PubMed] [Google Scholar]
  4. Billger M., Wallin M., Karlsson J. O. Proteolysis of tubulin and microtubule-associated proteins 1 and 2 by calpain I and II. Difference in sensitivity of assembled and disassembled microtubules. Cell Calcium. 1988 Feb;9(1):33–44. doi: 10.1016/0143-4160(88)90036-x. [DOI] [PubMed] [Google Scholar]
  5. Bray D. Mechanical tension produced by nerve cells in tissue culture. J Cell Sci. 1979 Jun;37:391–410. doi: 10.1242/jcs.37.1.391. [DOI] [PubMed] [Google Scholar]
  6. Bray D. Model for membrane movements in the neural growth cone. Nature. 1973 Jul 13;244(5411):93–96. doi: 10.1038/244093a0. [DOI] [PubMed] [Google Scholar]
  7. Bray D. Surface movements during the growth of single explanted neurons. Proc Natl Acad Sci U S A. 1970 Apr;65(4):905–910. doi: 10.1073/pnas.65.4.905. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Burke B. E., DeLorenzo R. J. Ca2+- and calmodulin-stimulated endogenous phosphorylation of neurotubulin. Proc Natl Acad Sci U S A. 1981 Feb;78(2):991–995. doi: 10.1073/pnas.78.2.991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cheng T. P., Reese T. S. Recycling of plasmalemma in chick tectal growth cones. J Neurosci. 1987 Jun;7(6):1752–1759. doi: 10.1523/JNEUROSCI.07-06-01752.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Connor J. A. Digital imaging of free calcium changes and of spatial gradients in growing processes in single, mammalian central nervous system cells. Proc Natl Acad Sci U S A. 1986 Aug;83(16):6179–6183. doi: 10.1073/pnas.83.16.6179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Elferink J. G., Deierkauf M. Involvement of intracellular Ca2+ in chemotaxis and metabolic burst by neutrophils: the use of antagonists of intracellular Ca2+. Res Commun Chem Pathol Pharmacol. 1985 Oct;50(1):67–81. [PubMed] [Google Scholar]
  12. Fox J. E., Goll D. E., Reynolds C. C., Phillips D. R. Identification of two proteins (actin-binding protein and P235) that are hydrolyzed by endogenous Ca2+-dependent protease during platelet aggregation. J Biol Chem. 1985 Jan 25;260(2):1060–1066. [PubMed] [Google Scholar]
  13. Frieden C. Actin and tubulin polymerization: the use of kinetic methods to determine mechanism. Annu Rev Biophys Biophys Chem. 1985;14:189–210. doi: 10.1146/annurev.bb.14.060185.001201. [DOI] [PubMed] [Google Scholar]
  14. Goldberg D. J. Local role of Ca2+ in formation of veils in growth cones. J Neurosci. 1988 Jul;8(7):2596–2605. doi: 10.1523/JNEUROSCI.08-07-02596.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Grunwald G. B., Pratt R. S., Lilien J. Enzymic dissection of embryonic cell adhesive mechanisms. III. Immunological identification of a component of the calcium-dependent adhesive system of embryonic chick neural retina cells. J Cell Sci. 1982 Jun;55:69–83. doi: 10.1242/jcs.55.1.69. [DOI] [PubMed] [Google Scholar]
  16. Hammarback J. A., McCarthy J. B., Palm S. L., Furcht L. T., Letourneau P. C. Growth cone guidance by substrate-bound laminin pathways is correlated with neuron-to-pathway adhesivity. Dev Biol. 1988 Mar;126(1):29–39. doi: 10.1016/0012-1606(88)90235-7. [DOI] [PubMed] [Google Scholar]
  17. Henson J. H., Schatten G. Calcium regulation of the actin-mediated cytoskeletal transformation of sea urchin coelomocytes. Cell Motil. 1983;3(5-6):525–534. doi: 10.1002/cm.970030519. [DOI] [PubMed] [Google Scholar]
  18. Hyatt H. A., Shure M. S., Begg D. A. Induction of shape transformation in sea urchin coelomocytes by the calcium ionophore A23187. Cell Motil. 1984;4(1):57–71. doi: 10.1002/cm.970040107. [DOI] [PubMed] [Google Scholar]
  19. Izant J. G. The role of calcium ions during mitosis. Calcium participates in the anaphase trigger. Chromosoma. 1983;88(1):1–10. doi: 10.1007/BF00329497. [DOI] [PubMed] [Google Scholar]
  20. Kamakura K., Ishiura S., Sugita H., Toyokura Y. Identification of Ca2+-activated neutral protease in the peripheral nerve and its effects on neurofilament degeneration. J Neurochem. 1983 Apr;40(4):908–913. doi: 10.1111/j.1471-4159.1983.tb08072.x. [DOI] [PubMed] [Google Scholar]
  21. Kater S. B., Mattson M. P., Cohan C., Connor J. Calcium regulation of the neuronal growth cone. Trends Neurosci. 1988 Jul;11(7):315–321. doi: 10.1016/0166-2236(88)90094-x. [DOI] [PubMed] [Google Scholar]
  22. Kauffman R. F., Taylor R. W., Pfeiffer D. R. Cation transport and specificity of ionomycin. Comparison with ionophore A23187 in rat liver mitochondria. J Biol Chem. 1980 Apr 10;255(7):2735–2739. [PubMed] [Google Scholar]
  23. Keith C., DiPaola M., Maxfield F. R., Shelanski M. L. Microinjection of Ca++-calmodulin causes a localized depolymerization of microtubules. J Cell Biol. 1983 Dec;97(6):1918–1924. doi: 10.1083/jcb.97.6.1918. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kruskal B. A., Shak S., Maxfield F. R. Spreading of human neutrophils is immediately preceded by a large increase in cytoplasmic free calcium. Proc Natl Acad Sci U S A. 1986 May;83(9):2919–2923. doi: 10.1073/pnas.83.9.2919. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Kupfer A., Kronebusch P. J., Rose J. K., Singer S. J. A critical role for the polarization of membrane recycling in cell motility. Cell Motil Cytoskeleton. 1987;8(2):182–189. doi: 10.1002/cm.970080210. [DOI] [PubMed] [Google Scholar]
  26. Letourneau P. C. Differences in the organization of actin in the growth cones compared with the neurites of cultured neurons from chick embryos. J Cell Biol. 1983 Oct;97(4):963–973. doi: 10.1083/jcb.97.4.963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Letourneau P. C. Immunocytochemical evidence for colocalization in neurite growth cones of actin and myosin and their relationship to cell--substratum adhesions. Dev Biol. 1981 Jul 15;85(1):113–122. doi: 10.1016/0012-1606(81)90240-2. [DOI] [PubMed] [Google Scholar]
  28. Letourneau P. C., Shattuck T. A. Distribution and possible interactions of actin-associated proteins and cell adhesion molecules of nerve growth cones. Development. 1989 Mar;105(3):505–519. doi: 10.1242/dev.105.3.505. [DOI] [PubMed] [Google Scholar]
  29. Letourneau P. C., Shattuck T. A., Ressler A. H. "Pull" and "push" in neurite elongation: observations on the effects of different concentrations of cytochalasin B and taxol. Cell Motil Cytoskeleton. 1987;8(3):193–209. doi: 10.1002/cm.970080302. [DOI] [PubMed] [Google Scholar]
  30. Lipton S. A. Bursting of calcium-activated cation-selective channels is associated with neurite regeneration in a mammalian central neuron. Neurosci Lett. 1987 Nov 10;82(1):21–28. doi: 10.1016/0304-3940(87)90165-0. [DOI] [PubMed] [Google Scholar]
  31. Lipton S. A. Bursting of calcium-activated cation-selective channels is associated with neurite regeneration in a mammalian central neuron. Neurosci Lett. 1987 Nov 10;82(1):21–28. doi: 10.1016/0304-3940(87)90165-0. [DOI] [PubMed] [Google Scholar]
  32. Liu C., Hermann T. E. Characterization of ionomycin as a calcium ionophore. J Biol Chem. 1978 Sep 10;253(17):5892–5894. [PubMed] [Google Scholar]
  33. Marasco W. A., Becker E. L., Oliver J. M. The ionic basis of chemotaxis. Separate cation requirements for neutrophil orientation and locomotion in a gradient of chemotactic peptide. Am J Pathol. 1980 Mar;98(3):749–768. [PMC free article] [PubMed] [Google Scholar]
  34. Marsh L., Letourneau P. C. Growth of neurites without filopodial or lamellipodial activity in the presence of cytochalasin B. J Cell Biol. 1984 Dec;99(6):2041–2047. doi: 10.1083/jcb.99.6.2041. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Mattson M. P., Kater S. B. Calcium regulation of neurite elongation and growth cone motility. J Neurosci. 1987 Dec;7(12):4034–4043. doi: 10.1523/JNEUROSCI.07-12-04034.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Mattson M. P., Taylor-Hunter A., Kater S. B. Neurite outgrowth in individual neurons of a neuronal population is differentially regulated by calcium and cyclic AMP. J Neurosci. 1988 May;8(5):1704–1711. doi: 10.1523/JNEUROSCI.08-05-01704.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Meshulam T., Proto P., Diamond R. D., Melnick D. A. Calcium modulation and chemotactic response: divergent stimulation of neutrophil chemotaxis and cytosolic calcium response by the chemotactic peptide receptor. J Immunol. 1986 Sep 15;137(6):1954–1960. [PubMed] [Google Scholar]
  38. Nixon R. A., Quackenbush R., Vitto A. Multiple calcium-activated neutral proteinases (CANP) in mouse retinal ganglion cell neurons: specificities for endogenous neuronal substrates and comparison to purified brain CANP. J Neurosci. 1986 May;6(5):1252–1263. doi: 10.1523/JNEUROSCI.06-05-01252.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Pfenninger K. H., Johnson M. P. Membrane biogenesis in the sprouting neuron. I. Selective transfer of newly synthesized phospholipid into the growing neurite. J Cell Biol. 1983 Oct;97(4):1038–1042. doi: 10.1083/jcb.97.4.1038. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Pfenninger K. H., Maylié-Pfenninger M. F. Lectin labeling of sprouting neurons. II. Relative movement and appearance of glycoconjugates during plasmalemmal expansion. J Cell Biol. 1981 Jun;89(3):547–559. doi: 10.1083/jcb.89.3.547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Poenie M., Alderton J., Tsien R. Y., Steinhardt R. A. Changes of free calcium levels with stages of the cell division cycle. Nature. 1985 May 9;315(6015):147–149. doi: 10.1038/315147a0. [DOI] [PubMed] [Google Scholar]
  42. Pollard T. D., Cooper J. A. Actin and actin-binding proteins. A critical evaluation of mechanisms and functions. Annu Rev Biochem. 1986;55:987–1035. doi: 10.1146/annurev.bi.55.070186.005011. [DOI] [PubMed] [Google Scholar]
  43. Pressman B. C. Biological applications of ionophores. Annu Rev Biochem. 1976;45:501–530. doi: 10.1146/annurev.bi.45.070176.002441. [DOI] [PubMed] [Google Scholar]
  44. Rasmussen H., Barrett P. Q. Calcium messenger system: an integrated view. Physiol Rev. 1984 Jul;64(3):938–984. doi: 10.1152/physrev.1984.64.3.938. [DOI] [PubMed] [Google Scholar]
  45. Reed P. W., Lardy H. A. A23187: a divalent cation ionophore. J Biol Chem. 1972 Nov 10;247(21):6970–6977. [PubMed] [Google Scholar]
  46. Schliwa M., Euteneuer U., Bulinski J. C., Izant J. G. Calcium lability of cytoplasmic microtubules and its modulation by microtubule-associated proteins. Proc Natl Acad Sci U S A. 1981 Feb;78(2):1037–1041. doi: 10.1073/pnas.78.2.1037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Schliwa M., van Blerkom J. Structural interaction of cytoskeletal components. J Cell Biol. 1981 Jul;90(1):222–235. doi: 10.1083/jcb.90.1.222. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Shaw G., Bray D. Movement and extension of isolated growth cones. Exp Cell Res. 1977 Jan;104(1):55–62. doi: 10.1016/0014-4827(77)90068-4. [DOI] [PubMed] [Google Scholar]
  49. Singer S. J., Kupfer A. The directed migration of eukaryotic cells. Annu Rev Cell Biol. 1986;2:337–365. doi: 10.1146/annurev.cb.02.110186.002005. [DOI] [PubMed] [Google Scholar]
  50. Small J. V. Organization of actin in the leading edge of cultured cells: influence of osmium tetroxide and dehydration on the ultrastructure of actin meshworks. J Cell Biol. 1981 Dec;91(3 Pt 1):695–705. doi: 10.1083/jcb.91.3.695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Smith S. J. Neuronal cytomechanics: the actin-based motility of growth cones. Science. 1988 Nov 4;242(4879):708–715. doi: 10.1126/science.3055292. [DOI] [PubMed] [Google Scholar]
  52. Stossel T. P., Chaponnier C., Ezzell R. M., Hartwig J. H., Janmey P. A., Kwiatkowski D. J., Lind S. E., Smith D. B., Southwick F. S., Yin H. L. Nonmuscle actin-binding proteins. Annu Rev Cell Biol. 1985;1:353–402. doi: 10.1146/annurev.cb.01.110185.002033. [DOI] [PubMed] [Google Scholar]
  53. Suarez-Isla B. A., Pelto D. J., Thompson J. M., Rapoport S. I. Blockers of calcium permeability inhibit neurite extension and formation of neuromuscular synapses in cell culture. Brain Res. 1984 Jun;316(2):263–270. doi: 10.1016/0165-3806(84)90311-0. [DOI] [PubMed] [Google Scholar]
  54. Tsui H. C., Lankford K. L., Klein W. L. Differentiation of neuronal growth cones: specialization of filopodial tips for adhesive interactions. Proc Natl Acad Sci U S A. 1985 Dec;82(23):8256–8260. doi: 10.1073/pnas.82.23.8256. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Tsui H. C., Ris H., Klein W. L. Ultrastructural networks in growth cones and neurites of cultured central nervous system neurons. Proc Natl Acad Sci U S A. 1983 Sep;80(18):5779–5783. doi: 10.1073/pnas.80.18.5779. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Tsui H. T., Lankford K. L., Ris H., Klein W. L. Novel organization of microtubules in cultured central nervous system neurons: formation of hairpin loops at ends of maturing neurites. J Neurosci. 1984 Dec;4(12):3002–3013. doi: 10.1523/JNEUROSCI.04-12-03002.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Vale R. D., Reese T. S., Sheetz M. P. Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility. Cell. 1985 Aug;42(1):39–50. doi: 10.1016/s0092-8674(85)80099-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Volberg T., Geiger B., Kartenbeck J., Franke W. W. Changes in membrane-microfilament interaction in intercellular adherens junctions upon removal of extracellular Ca2+ ions. J Cell Biol. 1986 May;102(5):1832–1842. doi: 10.1083/jcb.102.5.1832. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Williams D. A., Fogarty K. E., Tsien R. Y., Fay F. S. Calcium gradients in single smooth muscle cells revealed by the digital imaging microscope using Fura-2. Nature. 1985 Dec 12;318(6046):558–561. doi: 10.1038/318558a0. [DOI] [PubMed] [Google Scholar]
  60. Yamada K. M., Spooner B. S., Wessells N. K. Ultrastructure and function of growth cones and axons of cultured nerve cells. J Cell Biol. 1971 Jun;49(3):614–635. doi: 10.1083/jcb.49.3.614. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES