Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1989 Sep 1;109(3):1071–1083. doi: 10.1083/jcb.109.3.1071

The cortical microfilament system of lymphoblasts displays a periodic oscillatory activity in the absence of microtubules: implications for cell polarity

PMCID: PMC2115765  PMID: 2570076

Abstract

For an understanding of the role of microtubules in the definition of cell polarity, we have studied the cell surface motility of human lymphoblasts (KE37 cell line) using video microscopy, time-lapse photography, and immunofluorescent localization of F-actin and myosin. Polarized cell surface motility occurs in association with a constriction ring which forms on the centrosome side of the cell: the cytoplasm flows from the ring zone towards membrane veils which keep protruding in the same general direction. This association is ensured by microtubules: in their absence the ring is conspicuous and moves periodically back and forth across the cell, while a protrusion of membrane occurs alternately at each end of the cell when the ring is at the other. This oscillatory activity is correlated with a striking redistribution of myosin towards a cortical localization and appears to be due to the alternate flow of cortical myosin associated with the ring and to the periodic assembly of actin coupled with membrane protrusion. The ring cycle involves the progressive recruitment of myosin from a polar accumulation, or cap, its transportation across the cell and its accumulation in a new cap at the other end of the cell, suggesting an assembly-disassembly process. Inhibition of actin assembly induces, on the other hand, a dramatic microtubule-dependent cell elongation with definite polarity, likely to involve the interaction of microtubules with the cell cortex. We conclude that the polarized cell surface motility in KE37 cells is based on the periodic oscillatory activity of the actin system: a myosin-powered equatorial contraction and an actin-based membrane protrusion are concerted at the cell level and occur at opposite ends of the cell in absence of microtubules. This defines a polarity which reverses periodically as the ring moves across the cell. Microtubules impose a stable cell polarity by suppressing the ring movement. A permanent association of the myosin-powered contraction and the membrane protrusion is established which results in the unidirectional activity of the actin system. Microtubules exert their effect by controlling the recruitment of cytoplasmic myosin into the cortex, probably through their direct interaction with the cortical microfilament system.

Full Text

The Full Text of this article is available as a PDF (6.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bornens M. Is the centriole bound to the nuclear membrane? Nature. 1977 Nov 3;270(5632):80–82. doi: 10.1038/270080a0. [DOI] [PubMed] [Google Scholar]
  2. Durham A. C. A unified theory of the control of actin and myosin in nonmuscle movements. Cell. 1974 Jul;2(3):123–135. doi: 10.1016/0092-8674(74)90087-7. [DOI] [PubMed] [Google Scholar]
  3. Fais D., Nadezhdina E. S., Chentsov YuS Evidence for the nucleus-centriole association in living cells obtained by ultracentrifugation. Eur J Cell Biol. 1984 Mar;33(2):190–196. [PubMed] [Google Scholar]
  4. Forman D. S., Shain W. G., Jr, Fuchs D. A. Slow pulsatile movements of Schwann cells in vitro: a time-lapse cinemicrographic study. Cell Motil Cytoskeleton. 1986;6(6):595–603. doi: 10.1002/cm.970060608. [DOI] [PubMed] [Google Scholar]
  5. Gosti-Testu F., Marty M. C., Berges J., Maunoury R., Bornens M. Identification of centrosomal proteins in a human lymphoblastic cell line. EMBO J. 1986 Oct;5(10):2545–2550. doi: 10.1002/j.1460-2075.1986.tb04533.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gosti F., Marty M. C., Courvalin J. C., Maunoury R., Bornens M. Centrosomal proteins and lactate dehydrogenase possess a common epitope in human cell lines. Proc Natl Acad Sci U S A. 1987 Feb;84(4):1000–1004. doi: 10.1073/pnas.84.4.1000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hartwig J. H., Niederman R., Lind S. E. Cortical actin structures and their relationship to mammalian cell movements. Subcell Biochem. 1985;11:1–49. doi: 10.1007/978-1-4899-1698-3_1. [DOI] [PubMed] [Google Scholar]
  8. Haston W. S., Shields J. M. Contraction waves in lymphocyte locomotion. J Cell Sci. 1984 Jun;68:227–241. doi: 10.1242/jcs.68.1.227. [DOI] [PubMed] [Google Scholar]
  9. Hellewell S. B., Taylor D. L. The contractile basis of ameboid movement. VI. The solation-contraction coupling hypothesis. J Cell Biol. 1979 Dec;83(3):633–648. doi: 10.1083/jcb.83.3.633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hewitt J. A. Surf-riding model for cell capping. J Theor Biol. 1979 Sep 7;80(1):115–127. doi: 10.1016/0022-5193(79)90183-8. [DOI] [PubMed] [Google Scholar]
  11. Keller H. U., Cottier H. Crawling-like movements and polarisation in non-adherent leucocytes. Cell Biol Int Rep. 1981 Jan;5(1):3–7. doi: 10.1016/0309-1651(81)90151-x. [DOI] [PubMed] [Google Scholar]
  12. Keller H. U., Naef A., Zimmermann A. Effects of colchicine, vinblastine and nocodazole on polarity, motility, chemotaxis and cAMP levels of human polymorphonuclear leukocytes. Exp Cell Res. 1984 Jul;153(1):173–185. doi: 10.1016/0014-4827(84)90459-2. [DOI] [PubMed] [Google Scholar]
  13. Kirschner M., Mitchison T. Beyond self-assembly: from microtubules to morphogenesis. Cell. 1986 May 9;45(3):329–342. doi: 10.1016/0092-8674(86)90318-1. [DOI] [PubMed] [Google Scholar]
  14. Klotz C., Bordes N., Laine M. C., Sandoz D., Bornens M. Myosin at the apical pole of ciliated epithelial cells as revealed by a monoclonal antibody. J Cell Biol. 1986 Aug;103(2):613–619. doi: 10.1083/jcb.103.2.613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. MacLean-Fletcher S., Pollard T. D. Mechanism of action of cytochalasin B on actin. Cell. 1980 Jun;20(2):329–341. doi: 10.1016/0092-8674(80)90619-4. [DOI] [PubMed] [Google Scholar]
  16. Malawista S. E., De Boisfleury Chevance A. The cytokineplast: purified, stable, and functional motile machinery from human blood polymorphonuclear leukocytes. J Cell Biol. 1982 Dec;95(3):960–973. doi: 10.1083/jcb.95.3.960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Malech H. L., Root R. K., Gallin J. I. Structural analysis of human neutrophil migration. Centriole, microtubule, and microfilament orientation and function during chemotaxis. J Cell Biol. 1977 Dec;75(3):666–693. doi: 10.1083/jcb.75.3.666. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Miranda A. F., Godman G. C., Deitch A. D., Tanenbaum S. W. Action of cytochalasin D on cells of established lines. I. Early events. J Cell Biol. 1974 May;61(2):481–500. doi: 10.1083/jcb.61.2.481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Miranda A. F., Godman G. C., Tanenbaum S. W. Action of cytochalasin D on cells of established lines. II. Cortex and microfilaments. J Cell Biol. 1974 Aug;62(2):406–423. doi: 10.1083/jcb.62.2.406. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Oliver J. M., Berlin R. D. Mechanisms that regulate the structural and functional architecture of cell surfaces. Int Rev Cytol. 1982;74:55–94. doi: 10.1016/s0074-7696(08)61169-9. [DOI] [PubMed] [Google Scholar]
  21. Rich A. M., Hoffstein S. T. Inverse correlation between neutrophil microtubule numbers and enhanced random migration. J Cell Sci. 1981 Apr;48:181–191. doi: 10.1242/jcs.48.1.181. [DOI] [PubMed] [Google Scholar]
  22. Schliwa M. Action of cytochalasin D on cytoskeletal networks. J Cell Biol. 1982 Jan;92(1):79–91. doi: 10.1083/jcb.92.1.79. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Schulze E., Kirschner M. Microtubule dynamics in interphase cells. J Cell Biol. 1986 Mar;102(3):1020–1031. doi: 10.1083/jcb.102.3.1020. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Senda N., Tamura H., Shibata N., Yoshitake J., Konko K., Tanaka K. The mechanism of the movement of leucocytes. Exp Cell Res. 1975 Mar 15;91(2):393–407. doi: 10.1016/0014-4827(75)90120-2. [DOI] [PubMed] [Google Scholar]
  25. Shields J. M., Haston W. S. Behaviour of neutrophil leucocytes in uniform concentrations of chemotactic factors: contraction waves, cell polarity and persistence. J Cell Sci. 1985 Mar;74:75–93. doi: 10.1242/jcs.74.1.75. [DOI] [PubMed] [Google Scholar]
  26. Shimo-Oka T., Hayashi M., Watanabe Y. Tubulin-myosin interaction. Some properties of binding between tubulin and myosin. Biochemistry. 1980 Oct 14;19(21):4921–4926. doi: 10.1021/bi00562a034. [DOI] [PubMed] [Google Scholar]
  27. Solomon F., Magendantz M. Cytochalasin separates microtubule disassembly from loss of asymmetric morphology. J Cell Biol. 1981 Apr;89(1):157–161. doi: 10.1083/jcb.89.1.157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Soltys B. J., Borisy G. G. Polymerization of tubulin in vivo: direct evidence for assembly onto microtubule ends and from centrosomes. J Cell Biol. 1985 May;100(5):1682–1689. doi: 10.1083/jcb.100.5.1682. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Toyama Y., Forry-Schaudies S., Hoffman B., Holtzer H. Effects of taxol and Colcemid on myofibrillogenesis. Proc Natl Acad Sci U S A. 1982 Nov;79(21):6556–6560. doi: 10.1073/pnas.79.21.6556. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES