Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1989 Sep 1;109(3):1289–1299. doi: 10.1083/jcb.109.3.1289

A calcium-binding, asparagine-linked oligosaccharide is involved in skeleton formation in the sea urchin embryo

PMCID: PMC2115769  PMID: 2475510

Abstract

We have previously identified a 130-kD cell surface protein that is involved in calcium uptake and skeleton formation by gastrula stage embryos of the sea urchin Strongylocentrotus purpuratus (Carson et al., 1985. Cell. 41:639-648). A monoclonal antibody designated mAb 1223 specifically recognizes the 130-kD protein and inhibits Ca+2 uptake and growth of the CaCO3 spicules produced by embryonic primary mesenchyme cells cultured in vitro. In this report, we demonstrate that the epitope recognized by mAb 1223 is located on an anionic, asparagine- linked oligosaccharide chain on the 130-kD protein. Combined enzymatic and chemical treatments indicate that the 1223 oligosaccharide contains fucose and sialic acid that is likely to be O-acetylated. Moreover, we show that the oligosaccharide chain containing the 1223 epitope specifically binds divalent cations, including Ca+2. We propose that one function of this negatively charged oligosaccharide moiety on the surfaces of primary mesenchyme cells is to facilitate binding and sequestration of Ca+2 ions from the blastocoelic fluid before internalization and subsequent deposition into the growing CaCO3 skeleton.

Full Text

The Full Text of this article is available as a PDF (1.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ACKERS G. K., THOMPSON T. E. DETERMINATION OF STOICHIOMETRY AND EQUILIBRIUM CONSTANTS FOR REVERSIBLY ASSOCIATING SYSTEMS BY MOLECULAR SIEVE CHROMATOGRAPHY. Proc Natl Acad Sci U S A. 1965 Feb;53:342–349. doi: 10.1073/pnas.53.2.342. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Anstrom J. A., Chin J. E., Leaf D. S., Parks A. L., Raff R. A. Localization and expression of msp130, a primary mesenchyme lineage-specific cell surface protein in the sea urchin embryo. Development. 1987 Oct;101(2):255–265. doi: 10.1242/dev.101.2.255. [DOI] [PubMed] [Google Scholar]
  3. Ashwell G., Harford J. Carbohydrate-specific receptors of the liver. Annu Rev Biochem. 1982;51:531–554. doi: 10.1146/annurev.bi.51.070182.002531. [DOI] [PubMed] [Google Scholar]
  4. Ayotte L., Perlin A. S. N.m.r. spectroscopic observations related to the function of sulfate groups in heparin. Calcium binding vs. biological activity. Carbohydr Res. 1986 Jan 1;145(2):267–277. doi: 10.1016/s0008-6215(00)90434-8. [DOI] [PubMed] [Google Scholar]
  5. Caffrey J. M., Farach M. C. A monoclonal antibody specifically modulates dihydropyridine-sensitive calcium current in BC3H1 myocytes. Mol Pharmacol. 1988 Oct;34(4):518–526. [PubMed] [Google Scholar]
  6. Carlsen R. B., Pierce J. G. Purification and properties of an alpha-L-fucosidase from rat epididymis. J Biol Chem. 1972 Jan 10;247(1):23–32. [PubMed] [Google Scholar]
  7. Carson D. D., Farach M. C., Earles D. S., Decker G. L., Lennarz W. J. A monoclonal antibody inhibits calcium accumulation and skeleton formation in cultured embryonic cells of the sea urchin. Cell. 1985 Jun;41(2):639–648. doi: 10.1016/s0092-8674(85)80036-2. [DOI] [PubMed] [Google Scholar]
  8. Cheresh D. A., Reisfeld R. A., Varki A. P. O-acetylation of disialoganglioside GD3 by human melanoma cells creates a unique antigenic determinant. Science. 1984 Aug 24;225(4664):844–846. doi: 10.1126/science.6206564. [DOI] [PubMed] [Google Scholar]
  9. Decker G. L., Morrill J. B., Lennarz W. J. Characterization of sea urchin primary mesenchyme cells and spicules during biomineralization in vitro. Development. 1987 Oct;101(2):297–312. doi: 10.1242/dev.101.2.297. [DOI] [PubMed] [Google Scholar]
  10. Farach M. C., Tang J. P., Decker G. L., Carson D. D. Differential effects of p-nitrophenyl-D-xylosides on mouse blastocysts and uterine epithelial cells. Biol Reprod. 1988 Sep;39(2):443–455. doi: 10.1095/biolreprod39.2.443. [DOI] [PubMed] [Google Scholar]
  11. Farach M. C., Valdizan M., Park H. R., Decker G. L., Lennarz W. J. Developmental expression of a cell-surface protein involved in calcium uptake and skeleton formation in sea urchin embryos. Dev Biol. 1987 Aug;122(2):320–331. doi: 10.1016/0012-1606(87)90297-1. [DOI] [PubMed] [Google Scholar]
  12. Feizi T. Demonstration by monoclonal antibodies that carbohydrate structures of glycoproteins and glycolipids are onco-developmental antigens. Nature. 1985 Mar 7;314(6006):53–57. doi: 10.1038/314053a0. [DOI] [PubMed] [Google Scholar]
  13. Fischer H. D., Gonzalez-Noriega A., Sly W. S., Morré D. J. Phosphomannosyl-enzyme receptors in rat liver. Subcellular distribution and role in intracellular transport of lysosomal enzymes. J Biol Chem. 1980 Oct 25;255(20):9608–9615. [PubMed] [Google Scholar]
  14. Grant S. R., Farach M. C., Decker G. L., Woodward H. D., Farach H. A., Jr, Lennarz W. J. Developmental expression of cell-surface (glyco)proteins involved in gastrulation and spicule formation in sea urchin embryos. Cold Spring Harb Symp Quant Biol. 1985;50:91–98. doi: 10.1101/sqb.1985.050.01.013. [DOI] [PubMed] [Google Scholar]
  15. HUMMEL J. P., DREYER W. J. Measurement of protein-binding phenomena by gel filtration. Biochim Biophys Acta. 1962 Oct 8;63:530–532. doi: 10.1016/0006-3002(62)90124-5. [DOI] [PubMed] [Google Scholar]
  16. Hart G. W., Lennarz W. J. Effects of tunicamycin on the biosynthesis of glycosaminoglycans by embryonic chick cornea. J Biol Chem. 1978 Aug 25;253(16):5795–5801. [PubMed] [Google Scholar]
  17. Heifetz A., Lennarz W. J. Biosynthesis of N-glycosidically linked glycoproteins during gastrulation of sea urchin embryos. J Biol Chem. 1979 Jul 10;254(13):6119–6127. [PubMed] [Google Scholar]
  18. Jaques L. W., Brown E. B., Barrett J. M., Brey WS Jr Weltner W., Jr Sialic acid. A calcium-binding carbohydrate. J Biol Chem. 1977 Jul 10;252(13):4533–4538. [PubMed] [Google Scholar]
  19. Kaplan A., Achord D. T., Sly W. S. Phosphohexosyl components of a lysosomal enzyme are recognized by pinocytosis receptors on human fibroblasts. Proc Natl Acad Sci U S A. 1977 May;74(5):2026–2030. doi: 10.1073/pnas.74.5.2026. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kouvonen I., Gräsbeck R. The role of sialic acid in the binding of calcium ions to intrinsic factor and its intestinal receptor. Biochim Biophys Acta. 1984 Feb 14;797(2):163–170. doi: 10.1016/0304-4165(84)90118-1. [DOI] [PubMed] [Google Scholar]
  21. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  22. Long C., Mouat B. The binding of calcium ions by erythrocytes and 'ghost' -cell membranes. Biochem J. 1971 Aug;123(5):829–836. doi: 10.1042/bj1230829. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Maruyama K., Mikawa T., Ebashi S. Detection of calcium binding proteins by 45Ca autoradiography on nitrocellulose membrane after sodium dodecyl sulfate gel electrophoresis. J Biochem. 1984 Feb;95(2):511–519. doi: 10.1093/oxfordjournals.jbchem.a134633. [DOI] [PubMed] [Google Scholar]
  24. Mintz G. R., DeFrancesco S., Lennarz W. J. Spicule formation by cultured embryonic cells from the sea urchin. J Biol Chem. 1981 Dec 25;256(24):13105–13111. [PubMed] [Google Scholar]
  25. Ogawa Y., Tanokura M. Calcium binding to calmodulin: effects of ionic strength, Mg2+, pH and temperature. J Biochem. 1984 Jan;95(1):19–28. doi: 10.1093/oxfordjournals.jbchem.a134584. [DOI] [PubMed] [Google Scholar]
  26. Rutishauser U., Watanabe M., Silver J., Troy F. A., Vimr E. R. Specific alteration of NCAM-mediated cell adhesion by an endoneuraminidase. J Cell Biol. 1985 Nov;101(5 Pt 1):1842–1849. doi: 10.1083/jcb.101.5.1842. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Schauer R. Analysis of sialic acids. Methods Enzymol. 1987;138:132–161. doi: 10.1016/0076-6879(87)38012-7. [DOI] [PubMed] [Google Scholar]
  28. Schneider E. G., Nguyen H. T., Lennarz W. J. The effect of tunicamycin, an inhibitor of protein glycosylation, on embryonic development in the sea urchin. J Biol Chem. 1978 Apr 10;253(7):2348–2355. [PubMed] [Google Scholar]
  29. Spiro R. G., Bhoyroo V. D. Structure of the O-glycosidically linked carbohydrate units of fetuin. J Biol Chem. 1974 Sep 25;249(18):5704–5717. [PubMed] [Google Scholar]
  30. Swiedler S. J., Hart G. W., Tarentino A. L., Plummer T. H., Jr, Freed J. H. Stable oligosaccharide microheterogeneity at individual glycosylation sites of a murine major histocompatibility antigen derived from a B-cell lymphoma. J Biol Chem. 1983 Oct 10;258(19):11515–11523. [PubMed] [Google Scholar]
  31. Takasaki S., Mizuochi T., Kobata A. Hydrazinolysis of asparagine-linked sugar chains to produce free oligosaccharides. Methods Enzymol. 1982;83:263–268. doi: 10.1016/0076-6879(82)83019-x. [DOI] [PubMed] [Google Scholar]
  32. Ullrich K., Mersmann G., Weber E., Von Figura K. Evidence for lysosomal enzyme recognition by human fibroblasts via a phosphorylated carbohydrate moiety. Biochem J. 1978 Mar 15;170(3):643–650. doi: 10.1042/bj1700643. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Vannucchi S., Del Rosso M., Cella C., Urbano P., Chiarugi V. Surface glycosaminoglycans and calcium distribution in 3T3 cells. Biochem J. 1978 Jan 15;170(1):185–187. doi: 10.1042/bj1700185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Varki A., Diaz S. The release and purification of sialic acids from glycoconjugates: methods to minimize the loss and migration of O-acetyl groups. Anal Biochem. 1984 Feb;137(1):236–247. doi: 10.1016/0003-2697(84)90377-4. [DOI] [PubMed] [Google Scholar]
  35. Wessel G. M., Marchase R. B., McClay D. R. Ontogeny of the basal lamina in the sea urchin embryo. Dev Biol. 1984 May;103(1):235–245. doi: 10.1016/0012-1606(84)90025-3. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES