Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1989 Oct 1;109(4):1837–1848. doi: 10.1083/jcb.109.4.1837

Origin and deposition of basement membrane heparan sulfate proteoglycan in the developing intestine

PMCID: PMC2115786  PMID: 2529263

Abstract

The deposition of intestinal heparan sulfate proteoglycan (HSPG) at the epithelial-mesenchymal interface and its cellular source have been studied by immunocytochemistry at various developmental stages and in rat/chick interspecies hybrid intestines. Polyclonal heparan sulfate antibodies were produced by immunizing rabbits with HSPG purified from the Engelbreth-Holm-Swarm mouse tumor; these antibodies stained rat intestinal basement membranes. A monoclonal antibody (mAb 4C1) produced against lens capsule of 11-d-old chick embryo reacted with embryonic or adult chick basement membranes, but did not stain that of rat tissues. Immunoprecipitation experiments indicated that mAb 4C1 recognized the chicken basement membrane HSPG. Immunofluorescent staining with these antibodies allowed us to demonstrate that distribution of HSPG at the epithelial-mesenchymal interface varied with the stages of intestinal development, suggesting that remodeling of this proteoglycan is essential for regulating cell behavior during morphogenesis. The immunofluorescence pattern obtained with the two species-specific HSPG antibodies in rat/chick epithelial/mesenchymal hybrid intestines developed as grafts (into the coelomic cavity of chick embryos or under the kidney capsule of adult mice) led to the conclusion that HSPG molecules located in the basement membrane of the developing intestine were produced exclusively by the epithelial cells. These data emphasize the notion already gained from previous studies, in which type IV collagen has been shown to be produced by mesenchymal cells (Simon- Assmann, P., F. Bouziges, C. Arnold, K. Haffen, and M. Kedinger. 1988. Development (Camb.). 102:339-347), that epithelial-mesenchymal interactions play an important role in the formation of a complete basement membrane.

Full Text

The Full Text of this article is available as a PDF (4.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bayne E. K., Anderson M. J., Fambrough D. M. Extracellular matrix organization in developing muscle: correlation with acetylcholine receptor aggregates. J Cell Biol. 1984 Oct;99(4 Pt 1):1486–1501. doi: 10.1083/jcb.99.4.1486. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bernfield M., Banerjee S. D., Koda J. E., Rapraeger A. C. Remodelling of the basement membrane: morphogenesis and maturation. Ciba Found Symp. 1984;108:179–196. doi: 10.1002/9780470720899.ch12. [DOI] [PubMed] [Google Scholar]
  3. Bouziges F., Simon-Assmann P., Leberquier C., Haffen K., Kedinger M. Glycosaminoglycan expression in intestinal epithelial skin-fibroblastic cell cocultures. Fibroblastic cell-mediated effects of glucocorticoids. J Cell Sci. 1989 Apr;92(Pt 4):679–685. doi: 10.1242/jcs.92.4.679. [DOI] [PubMed] [Google Scholar]
  4. Bumol T. F., Reisfeld R. A. Unique glycoprotein-proteoglycan complex defined by monoclonal antibody on human melanoma cells. Proc Natl Acad Sci U S A. 1982 Feb;79(4):1245–1249. doi: 10.1073/pnas.79.4.1245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Burgess D. R. Structure of the epithelial - mesenchymal interface during early morphogenesis of the chick duodenum. Tissue Cell. 1976;8(1):147–158. doi: 10.1016/0040-8166(76)90026-4. [DOI] [PubMed] [Google Scholar]
  6. Carey D. J., Todd M. S. A cytoskeleton-associated plasma membrane heparan sulfate proteoglycan in Schwann cells. J Biol Chem. 1986 Jun 5;261(16):7518–7525. [PubMed] [Google Scholar]
  7. Carlin B., Jaffe R., Bender B., Chung A. E. Entactin, a novel basal lamina-associated sulfated glycoprotein. J Biol Chem. 1981 May 25;256(10):5209–5214. [PubMed] [Google Scholar]
  8. Dziadek M., Paulsson M., Aumailley M., Timpl R. Purification and tissue distribution of a small protein (BM-40) extracted from a basement membrane tumor. Eur J Biochem. 1986 Dec 1;161(2):455–464. doi: 10.1111/j.1432-1033.1986.tb10466.x. [DOI] [PubMed] [Google Scholar]
  9. Dziadek M., Paulsson M., Timpl R. Identification and interaction repertoire of large forms of the basement membrane protein nidogen. EMBO J. 1985 Oct;4(10):2513–2518. doi: 10.1002/j.1460-2075.1985.tb03964.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gallagher J. T., Lyon M., Steward W. P. Structure and function of heparan sulphate proteoglycans. Biochem J. 1986 Jun 1;236(2):313–325. doi: 10.1042/bj2360313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hahn U., Schuppan D., Hahn E. G., Merker H. J., Riecken E. O. Intestinal cells produce basement membrane proteins in vitro. Gut. 1987;28 (Suppl):143–151. doi: 10.1136/gut.28.suppl.143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Haloui Z., Jeanny J. C., Jonet L., Courtois Y., Laurent M. Immunochemical analysis of extracellular matrix during embryonic lens development of the Cat Fraser mouse. Exp Eye Res. 1988 Apr;46(4):463–474. doi: 10.1016/s0014-4835(88)80004-6. [DOI] [PubMed] [Google Scholar]
  13. Hassell J. R., Leyshon W. C., Ledbetter S. R., Tyree B., Suzuki S., Kato M., Kimata K., Kleinman H. K. Isolation of two forms of basement membrane proteoglycans. J Biol Chem. 1985 Jul 5;260(13):8098–8105. [PubMed] [Google Scholar]
  14. Hayashi K., Hayashi M., Jalkanen M., Firestone J. H., Trelstad R. L., Bernfield M. Immunocytochemistry of cell surface heparan sulfate proteoglycan in mouse tissues. A light and electron microscopic study. J Histochem Cytochem. 1987 Oct;35(10):1079–1088. doi: 10.1177/35.10.2957423. [DOI] [PubMed] [Google Scholar]
  15. Iozzo R. V. Cell surface heparan sulfate proteoglycan and the neoplastic phenotype. J Cell Biochem. 1988 May;37(1):61–78. doi: 10.1002/jcb.240370107. [DOI] [PubMed] [Google Scholar]
  16. Jeanny J. C., Fayein N., Moenner M., Chevallier B., Barritault D., Courtois Y. Specific fixation of bovine brain and retinal acidic and basic fibroblast growth factors to mouse embryonic eye basement membranes. Exp Cell Res. 1987 Jul;171(1):63–75. doi: 10.1016/0014-4827(87)90251-5. [DOI] [PubMed] [Google Scholar]
  17. Kedinger M., Simon-Assmann P. M., Lacroix B., Marxer A., Hauri H. P., Haffen K. Fetal gut mesenchyme induces differentiation of cultured intestinal endodermal and crypt cells. Dev Biol. 1986 Feb;113(2):474–483. doi: 10.1016/0012-1606(86)90183-1. [DOI] [PubMed] [Google Scholar]
  18. Kedinger M., Simon-Assmann P., Bouziges F., Haffen K. Epithelial-mesenchymal interactions in intestinal epithelial differentiation. Scand J Gastroenterol Suppl. 1988;151:62–69. doi: 10.3109/00365528809095915. [DOI] [PubMed] [Google Scholar]
  19. Kedinger M., Simon P. M., Grenier J. F., Haffen K. Role of epithelial--mesenchymal interactions in the ontogenesis of intestinal brush-border enzymes. Dev Biol. 1981 Sep;86(2):339–347. doi: 10.1016/0012-1606(81)90191-3. [DOI] [PubMed] [Google Scholar]
  20. Kennett R. H., Denis K. A., Tung A. S., Klinman N. R. Hybrid plasmacytoma production: fusions with adult spleen cells, monoclonal spleen fragments, neonatal spleen cells and human spleen cells. Curr Top Microbiol Immunol. 1978;81:77–91. doi: 10.1007/978-3-642-67448-8_13. [DOI] [PubMed] [Google Scholar]
  21. Komuro T. Fenestrations of the basal lamina of intestinal villi of the rat. Scanning and transmission electron microscopy. Cell Tissue Res. 1985;239(1):183–188. doi: 10.1007/BF00214918. [DOI] [PubMed] [Google Scholar]
  22. Kédinger M., Simon-Assmann P., Alexandre E., Haffen K. Importance of a fibroblastic support for in vitro differentiation of intestinal endodermal cells and for their response to glucocorticoids. Cell Differ. 1987 Mar;20(2-3):171–182. doi: 10.1016/0045-6039(87)90431-3. [DOI] [PubMed] [Google Scholar]
  23. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  24. Lander A. D., Fujii D. K., Reichardt L. F. Purification of a factor that promotes neurite outgrowth: isolation of laminin and associated molecules. J Cell Biol. 1985 Sep;101(3):898–913. doi: 10.1083/jcb.101.3.898. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Mathan M., Hermos J. A., Trier J. S. Structural features of the epithelio-mesenchymal interface of rat duodenal mucosa during development. J Cell Biol. 1972 Mar;52(3):577–588. doi: 10.1083/jcb.52.3.577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Murray I. C., Leblond C. P. Immunoelectron microscopy of endothelial cells in rat incisor suggests that most basement membrane components are produced by young cells, whereas heparan sulfate proteoglycan is produced by both young and old cells. J Histochem Cytochem. 1988 Jul;36(7):763–773. doi: 10.1177/36.7.2968396. [DOI] [PubMed] [Google Scholar]
  27. Rotundo R. L. Purification and properties of the membrane-bound form of acetylcholinesterase from chicken brain. Evidence for two distinct polypeptide chains. J Biol Chem. 1984 Nov 10;259(21):13186–13194. [PubMed] [Google Scholar]
  28. Sanders E. J. The roles of epithelial-mesenchymal cell interactions in developmental processes. Biochem Cell Biol. 1988 Jun;66(6):530–540. doi: 10.1139/o88-063. [DOI] [PubMed] [Google Scholar]
  29. Senior P. V., Critchley D. R., Beck F., Walker R. A., Varley J. M. The localization of laminin mRNA and protein in the postimplantation embryo and placenta of the mouse: an in situ hybridization and immunocytochemical study. Development. 1988 Nov;104(3):431–446. doi: 10.1242/dev.104.3.431. [DOI] [PubMed] [Google Scholar]
  30. Silberstein G. B., Daniel C. W. Glycosaminoglycans in the basal lamina and extracellular matrix of the developing mouse mammary duct. Dev Biol. 1982 Mar;90(1):215–222. doi: 10.1016/0012-1606(82)90228-7. [DOI] [PubMed] [Google Scholar]
  31. Simon-Assmann P., Bouziges F., Arnold C., Haffen K., Kedinger M. Epithelial-mesenchymal interactions in the production of basement membrane components in the gut. Development. 1988 Feb;102(2):339–347. doi: 10.1242/dev.102.2.339. [DOI] [PubMed] [Google Scholar]
  32. Simon-Assmann P., Kedinger M., Haffen K. Immunocytochemical localization of extracellular-matrix proteins in relation to rat intestinal morphogenesis. Differentiation. 1986;32(1):59–66. doi: 10.1111/j.1432-0436.1986.tb00556.x. [DOI] [PubMed] [Google Scholar]
  33. Smith R. L., Bernfield M. Mesenchyme cells degrade epithelial basal lamina glycosaminoglycan. Dev Biol. 1982 Dec;94(2):378–390. doi: 10.1016/0012-1606(82)90355-4. [DOI] [PubMed] [Google Scholar]
  34. Thesleff I., Jalkanen M., Vainio S., Bernfield M. Cell surface proteoglycan expression correlates with epithelial-mesenchymal interaction during tooth morphogenesis. Dev Biol. 1988 Oct;129(2):565–572. doi: 10.1016/0012-1606(88)90401-0. [DOI] [PubMed] [Google Scholar]
  35. Timpl R., Dziadek M., Fujiwara S., Nowack H., Wick G. Nidogen: a new, self-aggregating basement membrane protein. Eur J Biochem. 1983 Dec 15;137(3):455–465. doi: 10.1111/j.1432-1033.1983.tb07849.x. [DOI] [PubMed] [Google Scholar]
  36. Timpl R., Dziadek M. Structure, development, and molecular pathology of basement membranes. Int Rev Exp Pathol. 1986;29:1–112. [PubMed] [Google Scholar]
  37. Timpl R., Rohde H., Robey P. G., Rennard S. I., Foidart J. M., Martin G. R. Laminin--a glycoprotein from basement membranes. J Biol Chem. 1979 Oct 10;254(19):9933–9937. [PubMed] [Google Scholar]
  38. Timpl R., Wiedemann H., van Delden V., Furthmayr H., Kühn K. A network model for the organization of type IV collagen molecules in basement membranes. Eur J Biochem. 1981 Nov;120(2):203–211. doi: 10.1111/j.1432-1033.1981.tb05690.x. [DOI] [PubMed] [Google Scholar]
  39. Vigny M., Ollier-Hartmann M. P., Lavigne M., Fayein N., Jeanny J. C., Laurent M., Courtois Y. Specific binding of basic fibroblast growth factor to basement membrane-like structures and to purified heparan sulfate proteoglycan of the EHS tumor. J Cell Physiol. 1988 Nov;137(2):321–328. doi: 10.1002/jcp.1041370216. [DOI] [PubMed] [Google Scholar]
  40. Woods A., Hök M., Kjellén L., Smith C. G., Rees D. A. Relationship of heparan sulfate proteoglycans to the cytoskeleton and extracellular matrix of cultured fibroblasts. J Cell Biol. 1984 Nov;99(5):1743–1753. doi: 10.1083/jcb.99.5.1743. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES