Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1989 Oct 1;109(4):1549–1560. doi: 10.1083/jcb.109.4.1549

Mapping myosin light chains by immunoelectron microscopy. Use of anti- fluorescyl antibodies as structural probes

PMCID: PMC2115787  PMID: 2477378

Abstract

The two classes of light chains in vertebrate fast muscle myosin have been selectively labeled with the thiol specific reagent 5- (iodoacetamido) fluorescein to determine their location in the myosin head. The alkali light chains (A1 and A2) were labeled at a single cysteine residue near the COOH terminus, whereas the regulatory light chain (LC2) was reacted at either cysteine 125 or 154. The two cysteines of LC2 appear to be near each other in the tertiary structure as evidenced by the ease of formation of an intramolecular disulfide bond. Besides having favorable spectral properties, fluorescein is a potent haptenic immunogen for raising high affinity antibodies. When anti-fluorescyl antibodies were added to the fluorescein-labeled light chains, the fluorescence was quenched by greater than 90%, thereby providing a simple method for determining an association constant. The interaction with antibody was the same for light chains exchanged into myosin as for free light chains. Complexes of antibody bound to light chain could be visualized in the electron microscope by rotary shadowing with platinum. By this approach we have shown that the COOH- terminal regions of the two classes of light chains are widely separated in myosin: the cysteine residues of LC2 lie close to the head/rod junction, whereas the single cysteine of A1 or A2 is located approximately 90 A distal to the junction. These sites correspond to the positions of the NH2 termini of the light chains mapped in earlier studies (Winkelmann, D. A., and S. Lowey. 1986. J. Mol. Biol. 188:595- 612; Tokunaga, M., M. Suzuki, K. Saeki, and T. Wakabayashi. 1987b. J. Mol. Biol. 194:245-255). We conclude that the two classes of light chains do not lie in a simple colinear arrangement, but instead have a more complex organization in distinct regions of the myosin head.

Full Text

The Full Text of this article is available as a PDF (2.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adelstein R. S., Eisenberg E. Regulation and kinetics of the actin-myosin-ATP interaction. Annu Rev Biochem. 1980;49:921–956. doi: 10.1146/annurev.bi.49.070180.004421. [DOI] [PubMed] [Google Scholar]
  2. Alexis M. N., Gratzer W. B. Interaction of skeletal myosin light chains with calcium ions. Biochemistry. 1978 Jun 13;17(12):2319–2325. doi: 10.1021/bi00605a010. [DOI] [PubMed] [Google Scholar]
  3. Babu Y. S., Sack J. S., Greenhough T. J., Bugg C. E., Means A. R., Cook W. J. Three-dimensional structure of calmodulin. Nature. 1985 May 2;315(6014):37–40. doi: 10.1038/315037a0. [DOI] [PubMed] [Google Scholar]
  4. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  5. Carboni J. M., Conzelman K. A., Adams R. A., Kaiser D. A., Pollard T. D., Mooseker M. S. Structural and immunological characterization of the myosin-like 110-kD subunit of the intestinal microvillar 110K-calmodulin complex: evidence for discrete myosin head and calmodulin-binding domains. J Cell Biol. 1988 Nov;107(5):1749–1757. doi: 10.1083/jcb.107.5.1749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chantler P. D., Bower S. M. Cross-linking between translationally equivalent sites on the two heads of myosin. Relationship to energy transfer results between the same pair of sites. J Biol Chem. 1988 Jan 15;263(2):938–944. [PubMed] [Google Scholar]
  7. Collins J. H. Homology of myosin DTNB light chain with alkali light chains, troponin C and parvalbumin. Nature. 1976 Feb 26;259(5545):699–700. doi: 10.1038/259699a0. [DOI] [PubMed] [Google Scholar]
  8. Cooke R., Crowder M. S., Wendt C. H., Barnett V. A., Thomas D. D. Muscle cross-bridges: do they rotate? Adv Exp Med Biol. 1984;170:413–427. doi: 10.1007/978-1-4684-4703-3_37. [DOI] [PubMed] [Google Scholar]
  9. Dedman J. R., Potter J. D., Jackson R. L., Johnson J. D., Means A. R. Physicochemical properties of rat testis Ca2+-dependent regulator protein of cyclic nucleotide phosphodiesterase. Relationship of Ca2+-binding, conformational changes, and phosphodiesterase activity. J Biol Chem. 1977 Dec 10;252(23):8415–8422. [PubMed] [Google Scholar]
  10. Degani Y., Patchornik A. Cyanylation of sulfhydryl groups by 2-nitro-5-thiocyanobenzoic acid. High-yield modification and cleavage of peptides at cysteine residues. Biochemistry. 1974 Jan 1;13(1):1–11. doi: 10.1021/bi00698a001. [DOI] [PubMed] [Google Scholar]
  11. Dreizen P., Gershman L. C. Relationship of structure to function in myosin. II. Salt denaturation and recombination experiments. Biochemistry. 1970 Apr 14;9(8):1688–1693. doi: 10.1021/bi00810a006. [DOI] [PubMed] [Google Scholar]
  12. Elliott A., Offer G. Shape and flexibility of the myosin molecule. J Mol Biol. 1978 Aug 25;123(4):505–519. doi: 10.1016/0022-2836(78)90204-8. [DOI] [PubMed] [Google Scholar]
  13. Flicker P. F., Wallimann T., Vibert P. Electron microscopy of scallop myosin. Location of regulatory light chains. J Mol Biol. 1983 Sep 25;169(3):723–741. doi: 10.1016/s0022-2836(83)80167-3. [DOI] [PubMed] [Google Scholar]
  14. Hardwicke P. M., Wallimann T., Szent-Györgyi A. G. Light-chain movement and regulation in scallop myosin. Nature. 1983 Feb 10;301(5900):478–482. doi: 10.1038/301478a0. [DOI] [PubMed] [Google Scholar]
  15. Harrington W. F. On the origin of the contractile force in skeletal muscle. Proc Natl Acad Sci U S A. 1979 Oct;76(10):5066–5070. doi: 10.1073/pnas.76.10.5066. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Heidorn D. B., Trewhella J. Comparison of the crystal and solution structures of calmodulin and troponin C. Biochemistry. 1988 Feb 9;27(3):909–915. doi: 10.1021/bi00403a011. [DOI] [PubMed] [Google Scholar]
  17. Henry G. D., Trayer I. P., Brewer S., Levine B. A. The widespread distribution of alpha-N-trimethylalanine as the N-terminal amino acid of light chains from vertebrate striated muscle myosins. Eur J Biochem. 1985 Apr 1;148(1):75–82. doi: 10.1111/j.1432-1033.1985.tb08809.x. [DOI] [PubMed] [Google Scholar]
  18. Herzberg O., James M. N. Structure of the calcium regulatory muscle protein troponin-C at 2.8 A resolution. Nature. 1985 Feb 21;313(6004):653–659. doi: 10.1038/313653a0. [DOI] [PubMed] [Google Scholar]
  19. Holt J. C., Lowey S. An immunological approach to the role of the low molecular weight subunits in myosin. I. Physical--chemical and immunological characterization of the light chains. Biochemistry. 1975 Oct 21;14(21):4600–4609. doi: 10.1021/bi00692a007. [DOI] [PubMed] [Google Scholar]
  20. Hubbard S. R., Hodgson K. O., Doniach S. Small-angle x-ray scattering investigation of the solution structure of troponin C. J Biol Chem. 1988 Mar 25;263(9):4151–4158. [PubMed] [Google Scholar]
  21. Hudson E. N., Weber G. Synthesis and characterization of two fluorescent sulfhydryl reagents. Biochemistry. 1973 Oct 9;12(21):4154–4161. doi: 10.1021/bi00745a019. [DOI] [PubMed] [Google Scholar]
  22. Huxley H. E., Kress M. Crossbridge behaviour during muscle contraction. J Muscle Res Cell Motil. 1985 Apr;6(2):153–161. doi: 10.1007/BF00713057. [DOI] [PubMed] [Google Scholar]
  23. Huxley H. E., Simmons R. M., Faruqi A. R., Kress M., Bordas J., Koch M. H. Changes in the X-ray reflections from contracting muscle during rapid mechanical transients and their structural implications. J Mol Biol. 1983 Sep 15;169(2):469–506. doi: 10.1016/s0022-2836(83)80062-x. [DOI] [PubMed] [Google Scholar]
  24. Hynes T. R., Block S. M., White B. T., Spudich J. A. Movement of myosin fragments in vitro: domains involved in force production. Cell. 1987 Mar 27;48(6):953–963. doi: 10.1016/0092-8674(87)90704-5. [DOI] [PubMed] [Google Scholar]
  25. Kranz D. M., Herron J. N., Voss E. W., Jr Mechanisms of ligand binding by monoclonal anti-fluorescyl antibodies. J Biol Chem. 1982 Jun 25;257(12):6987–6995. [PubMed] [Google Scholar]
  26. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  27. Lopatin D. E., Voss E. W., Jr Fluorescein. Hapten and antibody active-site probe. Biochemistry. 1971 Jan 19;10(2):208–213. doi: 10.1021/bi00778a003. [DOI] [PubMed] [Google Scholar]
  28. Lowey S., Risby D. Light chains from fast and slow muscle myosins. Nature. 1971 Nov 12;234(5324):81–85. doi: 10.1038/234081a0. [DOI] [PubMed] [Google Scholar]
  29. Lowey S., Slayter H. S., Weeds A. G., Baker H. Substructure of the myosin molecule. I. Subfragments of myosin by enzymic degradation. J Mol Biol. 1969 May 28;42(1):1–29. doi: 10.1016/0022-2836(69)90483-5. [DOI] [PubMed] [Google Scholar]
  30. Margossian S. S., Lowey S. Preparation of myosin and its subfragments from rabbit skeletal muscle. Methods Enzymol. 1982;85(Pt B):55–71. doi: 10.1016/0076-6879(82)85009-x. [DOI] [PubMed] [Google Scholar]
  31. Marsh D. J., Lowey S. Fluorescence energey transfer in myosin subfragment-1. Biochemistry. 1980 Feb 19;19(4):774–784. doi: 10.1021/bi00545a025. [DOI] [PubMed] [Google Scholar]
  32. Matsuda G. The light chains of muscle myosin: its structure, function, and evolution. Adv Biophys. 1983;16:185–218. doi: 10.1016/0065-227x(83)90009-6. [DOI] [PubMed] [Google Scholar]
  33. Minowa O., Matsuda S., Yagi K. Ca2+-induced conformational changes of 20,000 dalton light chain of vertebrate striated muscle myosins. J Biochem. 1983 Jul;94(1):25–35. doi: 10.1093/oxfordjournals.jbchem.a134337. [DOI] [PubMed] [Google Scholar]
  34. Okamoto Y., Sekine T., Grammer J., Yount R. G. The essential light chains constitute part of the active site of smooth muscle myosin. Nature. 1986 Nov 6;324(6092):78–80. doi: 10.1038/324078a0. [DOI] [PubMed] [Google Scholar]
  35. Perrie W. T., Perry S. V. An electrophoretic study of the low-molecular-weight components of myosin. Biochem J. 1970 Aug;119(1):31–38. doi: 10.1042/bj1190031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Perrie W. T., Smillie L. B., Perry S. B. A phosphorylated light-chain component of myosin from skeletal muscle. Biochem J. 1973 Sep;135(1):151–164. doi: 10.1042/bj1350151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Persechini A., Kretsinger R. H. The central helix of calmodulin functions as a flexible tether. J Biol Chem. 1988 Sep 5;263(25):12175–12178. [PubMed] [Google Scholar]
  38. Rayment I., Winkelmann D. A. Crystallization of myosin subfragment 1. Proc Natl Acad Sci U S A. 1984 Jul;81(14):4378–4380. doi: 10.1073/pnas.81.14.4378. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Reinach F. C., Fischman D. A. Recombinant DNA approach for defining the primary structure of monoclonal antibody epitopes. The analysis of a conformation-specific antibody to myosin light chain 2. J Mol Biol. 1985 Feb 5;181(3):411–422. doi: 10.1016/0022-2836(85)90229-3. [DOI] [PubMed] [Google Scholar]
  40. Seaton B. A., Head J. F., Engelman D. M., Richards F. M. Calcium-induced increase in the radius of gyration and maximum dimension of calmodulin measured by small-angle X-ray scattering. Biochemistry. 1985 Nov 19;24(24):6740–6743. doi: 10.1021/bi00345a002. [DOI] [PubMed] [Google Scholar]
  41. Sellers J. R., Pato M. D., Adelstein R. S. Reversible phosphorylation of smooth muscle myosin, heavy meromyosin, and platelet myosin. J Biol Chem. 1981 Dec 25;256(24):13137–13142. [PubMed] [Google Scholar]
  42. Silberstein L., Lowey S. Isolated and distribution of myosin isoenzymes in chicken pectoralis muscle. J Mol Biol. 1981 May 15;148(2):153–189. doi: 10.1016/0022-2836(81)90510-6. [DOI] [PubMed] [Google Scholar]
  43. Sivaramakrishnan M., Burke M. The free heavy chain of vertebrate skeletal myosin subfragment 1 shows full enzymatic activity. J Biol Chem. 1982 Jan 25;257(2):1102–1105. [PubMed] [Google Scholar]
  44. Stafford W. F., Szent-Györgyi A. G. Physical characterization of myosin light chains. Biochemistry. 1978 Feb 21;17(4):607–614. doi: 10.1021/bi00597a008. [DOI] [PubMed] [Google Scholar]
  45. Sundaralingam M., Bergstrom R., Strasburg G., Rao S. T., Roychowdhury P., Greaser M., Wang B. C. Molecular structure of troponin C from chicken skeletal muscle at 3-angstrom resolution. Science. 1985 Feb 22;227(4689):945–948. doi: 10.1126/science.3969570. [DOI] [PubMed] [Google Scholar]
  46. Sundaralingam M., Drendel W., Greaser M. Stabilization of the long central helix of troponin C by intrahelical salt bridges between charged amino acid side chains. Proc Natl Acad Sci U S A. 1985 Dec;82(23):7944–7947. doi: 10.1073/pnas.82.23.7944. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Szent-Györgyi A. G., Szentkiralyi E. M., Kendrick-Jonas J. The light chains of scallop myosin as regulatory subunits. J Mol Biol. 1973 Feb 25;74(2):179–203. doi: 10.1016/0022-2836(73)90106-x. [DOI] [PubMed] [Google Scholar]
  48. Tokunaga M., Sutoh K., Toyoshima C., Wakabayashi T. Location of the ATPase site of myosin determined by three-dimensional electron microscopy. Nature. 1987 Oct 15;329(6140):635–638. doi: 10.1038/329635a0. [DOI] [PubMed] [Google Scholar]
  49. Tokunaga M., Suzuki M., Saeki K., Wakabayashi T. Position of the amino terminus of myosin light chain 1 and light chain 2 determined by electron microscopy with monoclonal antibody. J Mol Biol. 1987 Mar 20;194(2):245–255. doi: 10.1016/0022-2836(87)90372-x. [DOI] [PubMed] [Google Scholar]
  50. Tyler J. M., Branton D. Rotary shadowing of extended molecules dried from glycerol. J Ultrastruct Res. 1980 May;71(2):95–102. doi: 10.1016/s0022-5320(80)90098-2. [DOI] [PubMed] [Google Scholar]
  51. Valentine R. C., Green N. M. Electron microscopy of an antibody-hapten complex. J Mol Biol. 1967 Aug 14;27(3):615–617. doi: 10.1016/0022-2836(67)90063-0. [DOI] [PubMed] [Google Scholar]
  52. Vibert P. J. Domain structure of the myosin head in correlation-averaged images of shadowed molecules. J Muscle Res Cell Motil. 1988 Apr;9(2):147–155. doi: 10.1007/BF01773736. [DOI] [PubMed] [Google Scholar]
  53. Vibert P., Cohen C. Domains, motions and regulation in the myosin head. J Muscle Res Cell Motil. 1988 Aug;9(4):296–305. doi: 10.1007/BF01773873. [DOI] [PubMed] [Google Scholar]
  54. Vibert P., Szentkiralyi E., Hardwicke P., Szent-Györgyi A. G., Cohen C. Structural models for the regulatory switch of Myosin. Biophys J. 1986 Jan;49(1):131–133. doi: 10.1016/S0006-3495(86)83622-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Wagner P. D. Formation and characterization of myosin hybrids containing essential light chains and heavy chains from different muscle myosins. J Biol Chem. 1981 Mar 10;256(5):2493–2498. [PubMed] [Google Scholar]
  56. Wagner P. D., Weeds A. G. Studies on the role of myosin alkali light chains. Recombination and hybridization of light chains and heavy chains in subfragment-1 preparations. J Mol Biol. 1977 Jan 25;109(3):455–470. doi: 10.1016/s0022-2836(77)80023-5. [DOI] [PubMed] [Google Scholar]
  57. Walker M., Trinick J. Visualization of domains in native and nucleotide-trapped myosin heads by negative staining. J Muscle Res Cell Motil. 1988 Aug;9(4):359–366. doi: 10.1007/BF01773879. [DOI] [PubMed] [Google Scholar]
  58. Waller G. S., Lowey S. Myosin subunit interactions. Localization of the alkali light chains. J Biol Chem. 1985 Nov 15;260(26):14368–14373. [PubMed] [Google Scholar]
  59. Wallimann T., Hardwicke P. M., Szent-Györgyi A. G. Regulatory and essential light-chain interactions in scallop myosin. II. Photochemical cross-linking of regulatory and essential light-chains by heterobifunctional reagents. J Mol Biol. 1982 Mar 25;156(1):153–173. doi: 10.1016/0022-2836(82)90464-8. [DOI] [PubMed] [Google Scholar]
  60. Weeds A. G., McLachlan A. D. Structural homology of myosin alkali light chains, troponin C and carp calcium binding protein. Nature. 1974 Dec 20;252(5485):646–649. doi: 10.1038/252646a0. [DOI] [PubMed] [Google Scholar]
  61. White H. D. Special instrumentation and techniques for kinetic studies of contractile systems. Methods Enzymol. 1982;85(Pt B):698–708. doi: 10.1016/0076-6879(82)85057-x. [DOI] [PubMed] [Google Scholar]
  62. Wikman-Coffelt J., Srivastava S., Mason D. T. Dissociation and reassociation of rabbit skeletal muscle myosin. Biochimie. 1979;61(11-12):1309–1314. doi: 10.1016/s0300-9084(80)80290-2. [DOI] [PubMed] [Google Scholar]
  63. Winkelmann D. A., Lowey S., Press J. L. Monoclonal antibodies localize changes on myosin heavy chain isozymes during avian myogenesis. Cell. 1983 Aug;34(1):295–306. doi: 10.1016/0092-8674(83)90160-5. [DOI] [PubMed] [Google Scholar]
  64. Winkelmann D. A., Lowey S. Probing myosin head structure with monoclonal antibodies. J Mol Biol. 1986 Apr 20;188(4):595–612. doi: 10.1016/s0022-2836(86)80009-2. [DOI] [PubMed] [Google Scholar]
  65. Yamamoto K., Tokunaga M., Sutoh K., Wakabayashi T., Sekine T. Location of the SH group of the alkali light chain on the myosin head as revealed by electron microscopy. J Mol Biol. 1985 May 25;183(2):287–290. doi: 10.1016/0022-2836(85)90222-0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES