Abstract
We have used isolated embryonic photoreceptor cells as a model system with which to examine the mechanisms responsible for the development and maintenance of asymmetric Na+,K+-ATPase (ATPase) distribution. Photoreceptor precursors, which appear round and process free at culture onset, develop structural and molecular properties similar to those of photoreceptor cells in vivo. ATPase, recognized by an anti- ATPase antibody, is distributed over the entire surface of round photoreceptor precursors. As the cells develop, ATPase becomes progressively concentrated in the inner segment (where it is found in cells of the intact retina). This phenomenon occurs in cells developing in the absence of intercellular contacts. The development of ATPase polarity correlates with a decrease in the fraction of ATPase molecules that are mobile in the membrane (as determined by fluorescence photobleaching recovery), as well as with an increase in the fraction of ATPase that remains associated with the cells after detergent extraction. The magnitudes of the mobile ATPase fractions agree well with those of the detergent-extractable fractions in both the immature and developed photoreceptors. The distribution of alpha spectrin and ATPase-immunoreactive materials appeared qualitatively similar, and quantitative image analysis showed similar gradients of spectrin and Na+,K+-ATPase immunofluorescence along the long axis of elongated photoreceptors. Moreover, detergent extractability of alpha spectrin and the ATPase showed similar modifications in response to changes in pH or KCl concentration. ATPase detergent-extractable and mobile fractions were not changed in cultures treated with cytoskeletal inhibitors such as nocodazole. These data are consistent with a role for an asymmetrically distributed, spectrin-containing subcortical cytoskeleton in the preferential accumulation of Na+,K+-ATPase in the photoreceptor inner segment.
Full Text
The Full Text of this article is available as a PDF (2.7 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adler R. Developmental predetermination of the structural and molecular polarization of photoreceptor cells. Dev Biol. 1986 Oct;117(2):520–527. doi: 10.1016/0012-1606(86)90319-2. [DOI] [PubMed] [Google Scholar]
- Adler R., Hatlee M. Plasticity and differentiation of embryonic retinal cells after terminal mitosis. Science. 1989 Jan 20;243(4889):391–393. doi: 10.1126/science.2911751. [DOI] [PubMed] [Google Scholar]
- Adler R., Lindsey J. D., Elsner C. L. Expression of cone-like properties by chick embryo neural retina cells in glial-free monolayer cultures. J Cell Biol. 1984 Sep;99(3):1173–1178. doi: 10.1083/jcb.99.3.1173. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Almers W., Stirling C. Distribution of transport proteins over animal cell membranes. J Membr Biol. 1984;77(3):169–186. doi: 10.1007/BF01870567. [DOI] [PubMed] [Google Scholar]
- Angelides K. J., Elmer L. W., Loftus D., Elson E. Distribution and lateral mobility of voltage-dependent sodium channels in neurons. J Cell Biol. 1988 Jun;106(6):1911–1925. doi: 10.1083/jcb.106.6.1911. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ben-Ze'ev A., Duerr A., Solomon F., Penman S. The outer boundary of the cytoskeleton: a lamina derived from plasma membrane proteins. Cell. 1979 Aug;17(4):859–865. doi: 10.1016/0092-8674(79)90326-x. [DOI] [PubMed] [Google Scholar]
- Bennett V., Branton D. Selective association of spectrin with the cytoplasmic surface of human erythrocyte plasma membranes. Quantitative determination with purified (32P)spectrin. J Biol Chem. 1977 Apr 25;252(8):2753–2763. [PubMed] [Google Scholar]
- Bennett V., Stenbuck P. J. Association between ankyrin and the cytoplasmic domain of band 3 isolated from the human erythrocyte membrane. J Biol Chem. 1980 Jul 10;255(13):6424–6432. [PubMed] [Google Scholar]
- Branton D., Cohen C. M., Tyler J. Interaction of cytoskeletal proteins on the human erythrocyte membrane. Cell. 1981 Apr;24(1):24–32. doi: 10.1016/0092-8674(81)90497-9. [DOI] [PubMed] [Google Scholar]
- Cherry R. J. Rotational diffusion of membrane proteins: measurements with bacteriorhodopsin, band-3 proteins and erythrocyte oligosaccharides. Biochem Soc Symp. 1981;(46):183–190. [PubMed] [Google Scholar]
- Dotti C. G., Sullivan C. A., Banker G. A. The establishment of polarity by hippocampal neurons in culture. J Neurosci. 1988 Apr;8(4):1454–1468. doi: 10.1523/JNEUROSCI.08-04-01454.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Galvin N. J., Stockhausen D., Meyers-Hutchins B. L., Frazier W. A. Association of the cyclic AMP chemotaxis receptor with the detergent-insoluble cytoskeleton of Dictyostelium discoideum. J Cell Biol. 1984 Feb;98(2):584–595. doi: 10.1083/jcb.98.2.584. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Garner C. C., Tucker R. P., Matus A. Selective localization of messenger RNA for cytoskeletal protein MAP2 in dendrites. Nature. 1988 Dec 15;336(6200):674–677. doi: 10.1038/336674a0. [DOI] [PubMed] [Google Scholar]
- Glenney J. R., Jr, Glenney P., Weber K. Erythroid spectrin, brain fodrin, and intestinal brush border proteins (TW-260/240) are related molecules containing a common calmodulin-binding subunit bound to a variant cell type-specific subunit. Proc Natl Acad Sci U S A. 1982 Jul;79(13):4002–4005. doi: 10.1073/pnas.79.13.4002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Horst C. J., Forestner D. M., Besharse J. C. Cytoskeletal-membrane interactions: a stable interaction between cell surface glycoconjugates and doublet microtubules of the photoreceptor connecting cilium. J Cell Biol. 1987 Dec;105(6 Pt 2):2973–2987. doi: 10.1083/jcb.105.6.2973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jesaitis A. J., Yguerabide J. The lateral mobility of the (Na+,K+)-dependent ATPase in Madin-Darby canine kidney cells. J Cell Biol. 1986 Apr;102(4):1256–1263. doi: 10.1083/jcb.102.4.1256. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jung G., Helm R. M., Carraway C. A., Carraway K. L. Mechanism of concanavalin A-induced anchorage of the major cell surface glycoproteins to the submembrane cytoskeleton in 13762 ascites mammary adenocarcinoma cells. J Cell Biol. 1984 Jan;98(1):179–187. doi: 10.1083/jcb.98.1.179. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Koob R., Zimmermann M., Schoner W., Drenckhahn D. Colocalization and coprecipitation of ankyrin and Na+,K+-ATPase in kidney epithelial cells. Eur J Cell Biol. 1988 Feb;45(2):230–237. [PubMed] [Google Scholar]
- Lazarides E., Nelson W. J., Kasamatsu T. Segregation of two spectrin forms in the chicken optic system: a mechanism for establishing restricted membrane-cytoskeletal domains in neurons. Cell. 1984 Feb;36(2):269–278. doi: 10.1016/0092-8674(84)90220-4. [DOI] [PubMed] [Google Scholar]
- Madreperla S. A., Adler R. Opposing microtubule- and actin-dependent forces in the development and maintenance of structural polarity in retinal photoreceptors. Dev Biol. 1989 Jan;131(1):149–160. doi: 10.1016/s0012-1606(89)80046-6. [DOI] [PubMed] [Google Scholar]
- McGrail K. M., Sweadner K. J. Immunofluorescent localization of two different Na,K-ATPases in the rat retina and in identified dissociated retinal cells. J Neurosci. 1986 May;6(5):1272–1283. doi: 10.1523/JNEUROSCI.06-05-01272.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McOsker C. C., Bretscher A. Fodrin is part of a filamentous cortical sheath of the detergent resistant cytoskeleton of cultured cells before and after cytochalasin treatment. Eur J Cell Biol. 1986 Jan;39(2):321–327. [PubMed] [Google Scholar]
- Morrow J. S., Cianci C. D., Ardito T., Mann A. S., Kashgarian M. Ankyrin links fodrin to the alpha subunit of Na,K-ATPase in Madin-Darby canine kidney cells and in intact renal tubule cells. J Cell Biol. 1989 Feb;108(2):455–465. doi: 10.1083/jcb.108.2.455. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nelson W. J., Veshnock P. J. Ankyrin binding to (Na+ + K+)ATPase and implications for the organization of membrane domains in polarized cells. Nature. 1987 Aug 6;328(6130):533–536. doi: 10.1038/328533a0. [DOI] [PubMed] [Google Scholar]
- Nelson W. J., Veshnock P. J. Dynamics of membrane-skeleton (fodrin) organization during development of polarity in Madin-Darby canine kidney epithelial cells. J Cell Biol. 1986 Nov;103(5):1751–1765. doi: 10.1083/jcb.103.5.1751. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ojakian G. K., Schwimmer R. The polarized distribution of an apical cell surface glycoprotein is maintained by interactions with the cytoskeleton of Madin-Darby canine kidney cells. J Cell Biol. 1988 Dec;107(6 Pt 1):2377–2387. doi: 10.1083/jcb.107.6.2377. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PORTER R. R. The hydrolysis of rabbit y-globulin and antibodies with crystalline papain. Biochem J. 1959 Sep;73:119–126. doi: 10.1042/bj0730119. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Papermaster D. S., Schneider B. G., DeFoe D., Besharse J. C. Biosynthesis and vectorial transport of opsin on vesicles in retinal rod photoreceptors. J Histochem Cytochem. 1986 Jan;34(1):5–16. doi: 10.1177/34.1.2934469. [DOI] [PubMed] [Google Scholar]
- Rapraeger A., Jalkanen M., Bernfield M. Cell surface proteoglycan associates with the cytoskeleton at the basolateral cell surface of mouse mammary epithelial cells. J Cell Biol. 1986 Dec;103(6 Pt 2):2683–2696. doi: 10.1083/jcb.103.6.2683. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Richter-Landsberg C., Greene L. A., Shelanski M. L. Cell surface Thy-1-cross-reactive glycoprotein in cultured PC12 cells: modulation by nerve growth factor and association with the cytoskeleton. J Neurosci. 1985 Feb;5(2):468–476. doi: 10.1523/JNEUROSCI.05-02-00468.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Salas P. J., Vega-Salas D. E., Hochman J., Rodriguez-Boulan E., Edidin M. Selective anchoring in the specific plasma membrane domain: a role in epithelial cell polarity. J Cell Biol. 1988 Dec;107(6 Pt 1):2363–2376. doi: 10.1083/jcb.107.6.2363. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Spencer M., Detwiler P. B., Bunt-Milam A. H. Distribution of membrane proteins in mechanically dissociated retinal rods. Invest Ophthalmol Vis Sci. 1988 Jul;29(7):1012–1020. [PubMed] [Google Scholar]
- Stahl W. L., Baskin D. G. Immunocytochemical localization of Na+,K+ adenosine triphosphatase in the rat retina. J Histochem Cytochem. 1984 Feb;32(2):248–250. doi: 10.1177/32.2.6319483. [DOI] [PubMed] [Google Scholar]
- Stirling C. E., Sarthy P. V. Localization of the Na-K pump in turtle retina. J Neurocytol. 1985 Feb;14(1):33–47. doi: 10.1007/BF01150261. [DOI] [PubMed] [Google Scholar]
- Ueno S., Umar H., Bambauer H. J., Ueck M. Localization of ATPases in retinal receptor cells. Ophthalmic Res. 1984;16(1-2):15–20. doi: 10.1159/000265287. [DOI] [PubMed] [Google Scholar]
- Wolf D. E. Overcoming random diffusion in polarized cells--corralling the drunken beggar. Bioessays. 1987 Mar;6(3):116–121. doi: 10.1002/bies.950060306. [DOI] [PubMed] [Google Scholar]
- Yazulla S., Studholme K. M. Ultracytochemical distribution of ouabain-sensitive, K+-dependent, p-nitrophenylphosphatase in the synaptic layers of goldfish retina. J Comp Neurol. 1987 Jul 1;261(1):74–84. doi: 10.1002/cne.902610106. [DOI] [PubMed] [Google Scholar]