Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1989 Oct 1;109(4):1827–1836. doi: 10.1083/jcb.109.4.1827

Precursors of chondroitin sulfate proteoglycan are segregated within a subcompartment of the chondrocyte endoplasmic reticulum

PMCID: PMC2115806  PMID: 2677030

Abstract

Immunocytochemical methods were used at the levels of light and electron microscopy to examine the intracellular compartments of chondrocytes involved in extracellular matrix biosynthesis. The results of our studies provide morphological evidence for the compartmentalization of secretory proteins in the ER. Precursors of the large chondroitin sulfate proteoglycan (CSPG), the major proteoglycan species produced by chondrocytes, were present in the Golgi complex. In addition, CSPG precursors were localized in specialized regions of the ER. Link protein, a separate gene product which functions to stabilize extracellular aggregates of CSPG monomers with hyaluronic acid, was segregated similarly. In contrast, type II procollagen, another major secretory molecule produced by chondrocytes, was found homogeneously distributed throughout the ER. The CSPG precursor-containing ER compartment exhibits a variable tubulo-vesicular morphology but is invariably recognized as an electronlucent, smooth membrane-bounded region continuous with typical ribosome-studded elements of the rough ER. The observation that this ER structure does not stain with antibodies against resident ER proteins also suggests that the compartment is a specialized region distinct from the main part of the ER. These results support recent studies that consider the ER as a compartmentalized organelle and are discussed in light of the possible implications for proteoglycan biosynthesis and processing.

Full Text

The Full Text of this article is available as a PDF (4.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berger M., Schmidt M. F. Protein fatty acyltransferase is located in the rough endoplasmic reticulum. FEBS Lett. 1985 Aug 5;187(2):289–294. doi: 10.1016/0014-5793(85)81261-8. [DOI] [PubMed] [Google Scholar]
  2. Bole D. G., Hendershot L. M., Kearney J. F. Posttranslational association of immunoglobulin heavy chain binding protein with nascent heavy chains in nonsecreting and secreting hybridomas. J Cell Biol. 1986 May;102(5):1558–1566. doi: 10.1083/jcb.102.5.1558. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brinkley B. R., Murphy P., Richardson L. C. Procedure for embedding in situ selected cells cultured in vitro. J Cell Biol. 1967 Oct;35(1):279–283. doi: 10.1083/jcb.35.1.279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brown W. J., Farquhar M. G. The mannose-6-phosphate receptor for lysosomal enzymes is concentrated in cis Golgi cisternae. Cell. 1984 Feb;36(2):295–307. doi: 10.1016/0092-8674(84)90223-x. [DOI] [PubMed] [Google Scholar]
  5. Burgess T. L., Kelly R. B. Constitutive and regulated secretion of proteins. Annu Rev Cell Biol. 1987;3:243–293. doi: 10.1146/annurev.cb.03.110187.001331. [DOI] [PubMed] [Google Scholar]
  6. Campbell S. C., Schwartz N. B. Kinetics of intracellular processing of chondroitin sulfate proteoglycan core protein and other matrix components. J Cell Biol. 1988 Jun;106(6):2191–2202. doi: 10.1083/jcb.106.6.2191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Carney S. L., Muir H. The structure and function of cartilage proteoglycans. Physiol Rev. 1988 Jul;68(3):858–910. doi: 10.1152/physrev.1988.68.3.858. [DOI] [PubMed] [Google Scholar]
  8. Caterson B., Baker J. R., Christner J. E., Lee Y., Lentz M. Monoclonal antibodies as probes for determining the microheterogeneity of the link proteins of cartilage proteoglycan. J Biol Chem. 1985 Sep 15;260(20):11348–11356. [PubMed] [Google Scholar]
  9. Caterson B., Christner J. E., Baker J. R. Identification of a monoclonal antibody that specifically recognizes corneal and skeletal keratan sulfate. Monoclonal antibodies to cartilage proteoglycan. J Biol Chem. 1983 Jul 25;258(14):8848–8854. [PubMed] [Google Scholar]
  10. Chen C., Bonifacino J. S., Yuan L. C., Klausner R. D. Selective degradation of T cell antigen receptor chains retained in a pre-Golgi compartment. J Cell Biol. 1988 Dec;107(6 Pt 1):2149–2161. doi: 10.1083/jcb.107.6.2149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Choi H. U., Tang L. H., Johnson T. L., Rosenberg L. Proteoglycans from bovine nasal and articular cartilages. Fractionation of the link proteins by wheat germ agglutinin affinity chromatography. J Biol Chem. 1985 Oct 25;260(24):13370–13376. [PubMed] [Google Scholar]
  12. Chung K. N., Walter P., Aponte G. W., Moore H. P. Molecular sorting in the secretory pathway. Science. 1989 Jan 13;243(4888):192–197. doi: 10.1126/science.2911732. [DOI] [PubMed] [Google Scholar]
  13. Copeland C. S., Doms R. W., Bolzau E. M., Webster R. G., Helenius A. Assembly of influenza hemagglutinin trimers and its role in intracellular transport. J Cell Biol. 1986 Oct;103(4):1179–1191. doi: 10.1083/jcb.103.4.1179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Copeland C. S., Zimmer K. P., Wagner K. R., Healey G. A., Mellman I., Helenius A. Folding, trimerization, and transport are sequential events in the biogenesis of influenza virus hemagglutinin. Cell. 1988 Apr 22;53(2):197–209. doi: 10.1016/0092-8674(88)90381-9. [DOI] [PubMed] [Google Scholar]
  15. Doms R. W., Keller D. S., Helenius A., Balch W. E. Role for adenosine triphosphate in regulating the assembly and transport of vesicular stomatitis virus G protein trimers. J Cell Biol. 1987 Nov;105(5):1957–1969. doi: 10.1083/jcb.105.5.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Eldred W. D., Zucker C., Karten H. J., Yazulla S. Comparison of fixation and penetration enhancement techniques for use in ultrastructural immunocytochemistry. J Histochem Cytochem. 1983 Feb;31(2):285–292. doi: 10.1177/31.2.6339606. [DOI] [PubMed] [Google Scholar]
  17. FEWER D., THREADGOLD J., ANDSHELDON H. STUDIES ON CARTILAGE. V. ELECTRON MICROSCOPIC OBSERVATIONS ON THE AUTORADIOGRAPHIC LOCALIZATION OF S35 IN CELLS AND MATRIX. J Ultrastruct Res. 1964 Aug;11:166–172. doi: 10.1016/s0022-5320(64)80100-3. [DOI] [PubMed] [Google Scholar]
  18. Farquhar M. G., Palade G. E. The Golgi apparatus (complex)-(1954-1981)-from artifact to center stage. J Cell Biol. 1981 Dec;91(3 Pt 2):77s–103s. doi: 10.1083/jcb.91.3.77s. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Farquhar M. G. Progress in unraveling pathways of Golgi traffic. Annu Rev Cell Biol. 1985;1:447–488. doi: 10.1146/annurev.cb.01.110185.002311. [DOI] [PubMed] [Google Scholar]
  20. Fellini S. A., Kimura J. H., Hascall V. C. Polydispersity of proteoglycans synthesized by chondrocytes from the Swarm rat chondrosarcoma. J Biol Chem. 1981 Aug 10;256(15):7883–7889. [PubMed] [Google Scholar]
  21. Fitting T., Kabat D. Evidence for a glycoprotein "signal" involved in transport between subcellular organelles. Two membrane glycoproteins encoded by murine leukemia virus reach the cell surface at different rates. J Biol Chem. 1982 Dec 10;257(23):14011–14017. [PubMed] [Google Scholar]
  22. Fries E., Gustafsson L., Peterson P. A. Four secretory proteins synthesized by hepatocytes are transported from endoplasmic reticulum to Golgi complex at different rates. EMBO J. 1984 Jan;3(1):147–152. doi: 10.1002/j.1460-2075.1984.tb01775.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. GODMAN G. C., LANE N. ON THE SITE OF SULFATION IN THE CHONDROCYTE. J Cell Biol. 1964 Jun;21:353–366. doi: 10.1083/jcb.21.3.353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Geetha-Habib M., Campbell S. C., Schwartz N. B. Subcellular localization of the synthesis and glycosylation of chondroitin sulfate proteoglycan core protein. J Biol Chem. 1984 Jun 10;259(11):7300–7310. [PubMed] [Google Scholar]
  25. Gething M. J., McCammon K., Sambrook J. Expression of wild-type and mutant forms of influenza hemagglutinin: the role of folding in intracellular transport. Cell. 1986 Sep 12;46(6):939–950. doi: 10.1016/0092-8674(86)90076-0. [DOI] [PubMed] [Google Scholar]
  26. Green R., Shields D. Somatostatin discriminates between the intracellular pathways of secretory and membrane proteins. J Cell Biol. 1984 Jul;99(1 Pt 1):97–104. doi: 10.1083/jcb.99.1.97. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Hascall G. K. Ultrastructure of the chondrocytes and extracellular matrix of the swarm rat chondrosarcoma. Anat Rec. 1980 Oct;198(2):135–146. doi: 10.1002/ar.1091980202. [DOI] [PubMed] [Google Scholar]
  28. Hassell J. R., Kimura J. H., Hascall V. C. Proteoglycan core protein families. Annu Rev Biochem. 1986;55:539–567. doi: 10.1146/annurev.bi.55.070186.002543. [DOI] [PubMed] [Google Scholar]
  29. Hay E. D. Extracellular matrix. J Cell Biol. 1981 Dec;91(3 Pt 2):205s–223s. doi: 10.1083/jcb.91.3.205s. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Hering T. M., Sandell L. J. Biosynthesis and cell-free translation of Swarm rat chondrosarcoma and bovine cartilage link proteins. J Biol Chem. 1988 Jan 15;263(2):1030–1036. [PubMed] [Google Scholar]
  31. Hoffmann H. P., Schwartz N. B., Rodén L., Prockop D. J. Location of xylosyltransferase in the cisternae of the rough endoplasmic reticulum of embryonic cartilage cells. Connect Tissue Res. 1984;12(2):151–163. doi: 10.3109/03008208408992780. [DOI] [PubMed] [Google Scholar]
  32. Kabcenell A. K., Atkinson P. H. Processing of the rough endoplasmic reticulum membrane glycoproteins of rotavirus SA11. J Cell Biol. 1985 Oct;101(4):1270–1280. doi: 10.1083/jcb.101.4.1270. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Kimata K., Okayama M., Suzuki S., Suzuki I., Hoshino M. Nascent mucopolysaccharides attached to the Golgi membrane of chondrocytes. Biochim Biophys Acta. 1971 Jun 22;237(3):606–610. doi: 10.1016/0304-4165(71)90282-0. [DOI] [PubMed] [Google Scholar]
  34. Kimura J. H., Lohmander L. S., Hascall V. C. Studies on the biosynthesis of cartilage proteoglycan in a model system of cultured chondrocytes from the Swarm rat chondrosarcoma. J Cell Biochem. 1984;26(4):261–278. doi: 10.1002/jcb.240260406. [DOI] [PubMed] [Google Scholar]
  35. Kimura J. H., Thonar E. J., Hascall V. C., Reiner A., Poole A. R. Identification of core protein, an intermediate in proteoglycan biosynthesis in cultured chondrocytes from the Swarm rat chondrosarcoma. J Biol Chem. 1981 Aug 10;256(15):7890–7897. [PubMed] [Google Scholar]
  36. Koivu J., Myllylä R. Interchain disulfide bond formation in types I and II procollagen. Evidence for a protein disulfide isomerase catalyzing bond formation. J Biol Chem. 1987 May 5;262(13):6159–6164. [PubMed] [Google Scholar]
  37. Kreibich G., Ulrich B. L., Sabatini D. D. Proteins of rough microsomal membranes related to ribosome binding. I. Identification of ribophorins I and II, membrane proteins characteristics of rough microsomes. J Cell Biol. 1978 May;77(2):464–487. doi: 10.1083/jcb.77.2.464. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Kreis T. E., Lodish H. F. Oligomerization is essential for transport of vesicular stomatitis viral glycoprotein to the cell surface. Cell. 1986 Sep 12;46(6):929–937. doi: 10.1016/0092-8674(86)90075-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Lippincott-Schwartz J., Bonifacino J. S., Yuan L. C., Klausner R. D. Degradation from the endoplasmic reticulum: disposing of newly synthesized proteins. Cell. 1988 Jul 15;54(2):209–220. doi: 10.1016/0092-8674(88)90553-3. [DOI] [PubMed] [Google Scholar]
  40. Lodish H. F., Kong N., Snider M., Strous G. J. Hepatoma secretory proteins migrate from rough endoplasmic reticulum to Golgi at characteristic rates. Nature. 1983 Jul 7;304(5921):80–83. doi: 10.1038/304080a0. [DOI] [PubMed] [Google Scholar]
  41. Lohmander L. S., Hascall V. C., Yanagishita M., Kuettner K. E., Kimura J. H. Post-translational events in proteoglycan synthesis: kinetics of synthesis of chondroitin sulfate and oligosaccharides on the core protein. Arch Biochem Biophys. 1986 Oct;250(1):211–227. doi: 10.1016/0003-9861(86)90719-8. [DOI] [PubMed] [Google Scholar]
  42. Louvard D., Reggio H., Warren G. Antibodies to the Golgi complex and the rough endoplasmic reticulum. J Cell Biol. 1982 Jan;92(1):92–107. doi: 10.1083/jcb.92.1.92. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. McLean I. W., Nakane P. K. Periodate-lysine-paraformaldehyde fixative. A new fixation for immunoelectron microscopy. J Histochem Cytochem. 1974 Dec;22(12):1077–1083. doi: 10.1177/22.12.1077. [DOI] [PubMed] [Google Scholar]
  44. Munro S., Pelham H. R. A C-terminal signal prevents secretion of luminal ER proteins. Cell. 1987 Mar 13;48(5):899–907. doi: 10.1016/0092-8674(87)90086-9. [DOI] [PubMed] [Google Scholar]
  45. Nuwayhid N., Glaser J. H., Johnson J. C., Conrad H. E., Hauser S. C., Hirschberg C. B. Xylosylation and glucuronosylation reactions in rat liver Golgi apparatus and endoplasmic reticulum. J Biol Chem. 1986 Oct 5;261(28):12936–12941. [PubMed] [Google Scholar]
  46. O'Donnell C. M., Kaczman-Daniel K., Goetinck P. F., Vertel B. M. Nanomelic chondrocytes synthesize a glycoprotein related to chondroitin sulfate proteoglycan core protein. J Biol Chem. 1988 Nov 25;263(33):17749–17754. [PubMed] [Google Scholar]
  47. Orci L., Ravazzola M., Amherdt M., Perrelet A., Powell S. K., Quinn D. L., Moore H. P. The trans-most cisternae of the Golgi complex: a compartment for sorting of secretory and plasma membrane proteins. Cell. 1987 Dec 24;51(6):1039–1051. doi: 10.1016/0092-8674(87)90590-3. [DOI] [PubMed] [Google Scholar]
  48. Pacifici M., Soltesz R., Thal G., Shanley D. J., Boettiger D., Holtzer H. Immunological characterization of the major chick cartilage proteoglycan and its intracellular localization in cultured chondroblasts: a comparison with Type II procollagen. J Cell Biol. 1983 Dec;97(6):1724–1736. doi: 10.1083/jcb.97.6.1724. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Palade G. Intracellular aspects of the process of protein synthesis. Science. 1975 Aug 1;189(4200):347–358. doi: 10.1126/science.1096303. [DOI] [PubMed] [Google Scholar]
  50. Pathak R. K., Merkle R. K., Cummings R. D., Goldstein J. L., Brown M. S., Anderson R. G. Immunocytochemical localization of mutant low density lipoprotein receptors that fail to reach the Golgi complex. J Cell Biol. 1988 Jun;106(6):1831–1841. doi: 10.1083/jcb.106.6.1831. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Pfeffer S. R., Rothman J. E. Biosynthetic protein transport and sorting by the endoplasmic reticulum and Golgi. Annu Rev Biochem. 1987;56:829–852. doi: 10.1146/annurev.bi.56.070187.004145. [DOI] [PubMed] [Google Scholar]
  52. Prockop D. J., Kivirikko K. I., Tuderman L., Guzman N. A. The biosynthesis of collagen and its disorders (second of two parts). N Engl J Med. 1979 Jul 12;301(2):77–85. doi: 10.1056/NEJM197907123010204. [DOI] [PubMed] [Google Scholar]
  53. Ratcliffe A., Fryer P. R., Hardingham T. E. Proteoglycan biosynthesis in chondrocytes: protein A-gold localization of proteoglycan protein core and chondroitin sulfate within Golgi subcompartments. J Cell Biol. 1985 Dec;101(6):2355–2365. doi: 10.1083/jcb.101.6.2355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Rose J. K., Doms R. W. Regulation of protein export from the endoplasmic reticulum. Annu Rev Cell Biol. 1988;4:257–288. doi: 10.1146/annurev.cb.04.110188.001353. [DOI] [PubMed] [Google Scholar]
  55. Roth J., Bendayan M., Carlemalm E., Villiger W., Garavito M. Enhancement of structural preservation and immunocytochemical staining in low temperature embedded pancreatic tissue. J Histochem Cytochem. 1981 May;29(5):663–671. doi: 10.1177/29.5.6166664. [DOI] [PubMed] [Google Scholar]
  56. Rothman J. E. Protein sorting by selective retention in the endoplasmic reticulum and Golgi stack. Cell. 1987 Aug 14;50(4):521–522. doi: 10.1016/0092-8674(87)90024-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Ruoslahti E. Structure and biology of proteoglycans. Annu Rev Cell Biol. 1988;4:229–255. doi: 10.1146/annurev.cb.04.110188.001305. [DOI] [PubMed] [Google Scholar]
  58. Saraste J., Kuismanen E. Pre- and post-Golgi vacuoles operate in the transport of Semliki Forest virus membrane glycoproteins to the cell surface. Cell. 1984 Sep;38(2):535–549. doi: 10.1016/0092-8674(84)90508-7. [DOI] [PubMed] [Google Scholar]
  59. Saraste J., Palade G. E., Farquhar M. G. Temperature-sensitive steps in the transport of secretory proteins through the Golgi complex in exocrine pancreatic cells. Proc Natl Acad Sci U S A. 1986 Sep;83(17):6425–6429. doi: 10.1073/pnas.83.17.6425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Scheele G., Tartakoff A. Exit of nonglycosylated secretory proteins from the rough endoplasmic reticulum is asynchronous in the exocrine pancreas. J Biol Chem. 1985 Jan 25;260(2):926–931. [PubMed] [Google Scholar]
  61. Slot J. W., Geuze H. J. A new method of preparing gold probes for multiple-labeling cytochemistry. Eur J Cell Biol. 1985 Jul;38(1):87–93. [PubMed] [Google Scholar]
  62. Strous G. J., Lodish H. F. Intracellular transport of secretory and membrane proteins in hepatoma cells infected by vesicular stomatitis virus. Cell. 1980 Dec;22(3):709–717. doi: 10.1016/0092-8674(80)90547-4. [DOI] [PubMed] [Google Scholar]
  63. Takagi M., Parmley R. T., Denys F. R. Ultrastructural cytochemistry and radioautography of complex carbohydrates in secretory granules of epiphyseal chondrocytes. Lab Invest. 1981 Feb;44(2):116–126. [PubMed] [Google Scholar]
  64. Thyberg J., Lohmander S., Friberg U. Electron microscopic demonstration of proteoglycans in guinea pig epiphyseal cartilage. J Ultrastruct Res. 1973 Dec;45(5):407–427. doi: 10.1016/s0022-5320(73)80070-x. [DOI] [PubMed] [Google Scholar]
  65. Tooze S. A., Tooze J., Warren G. Site of addition of N-acetyl-galactosamine to the E1 glycoprotein of mouse hepatitis virus-A59. J Cell Biol. 1988 May;106(5):1475–1487. doi: 10.1083/jcb.106.5.1475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Upholt W. B., Vertel B. M., Dorfman A. Cell-free translation of cartilage RNAs. Ala J Med Sci. 1981 Jan;18(1):35–40. [PubMed] [Google Scholar]
  67. Upholt W. B., Vertel B. M., Dorfman A. Translation and characterization of messenger RNAs in differentiating chicken cartilage. Proc Natl Acad Sci U S A. 1979 Oct;76(10):4847–4851. doi: 10.1073/pnas.76.10.4847. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Velasco A., Hidalgo J., Pérez-Vilar J., García-Herdugo G., Navas P. Detection of glycosaminoglycans in the Golgi complex of chondrocytes. Eur J Cell Biol. 1988 Dec;47(2):241–250. [PubMed] [Google Scholar]
  69. Vertel B. M., Barkman L. L. Immunofluorescence studies of chondroitin sulfate proteoglycan biosynthesis: the use of monoclonal antibodies. Coll Relat Res. 1984 Jan;4(1):1–20. doi: 10.1016/s0174-173x(84)80025-4. [DOI] [PubMed] [Google Scholar]
  70. Vertel B. M., Barkman L. L., Morrell J. J. Intracellular features of type II procollagen and chondroitin sulfate proteoglycan synthesis in chondrocytes. J Cell Biochem. 1985;27(3):215–229. doi: 10.1002/jcb.240270304. [DOI] [PubMed] [Google Scholar]
  71. Vertel B. M., Dorfman A. Simultaneous localization of type II collagen and core protein of chondroitin sulfate proteoglycan in individual chondrocytes. Proc Natl Acad Sci U S A. 1979 Mar;76(3):1261–1264. doi: 10.1073/pnas.76.3.1261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Vertel B. M., Hitti Y. Biosynthetic precursors of cartilage chondroitin sulfate proteoglycan. Coll Relat Res. 1987 Apr;7(1):57–75. doi: 10.1016/s0174-173x(87)80021-3. [DOI] [PubMed] [Google Scholar]
  73. Vertel B. M., Morrell J. J., Barkman L. L. Immunofluorescence studies on cartilage matrix synthesis. The synthesis of link protein, chondroitin sulfate proteoglycan monomer and type II collagen. Exp Cell Res. 1985 Jun;158(2):423–432. doi: 10.1016/0014-4827(85)90466-5. [DOI] [PubMed] [Google Scholar]
  74. Walter P., Lingappa V. R. Mechanism of protein translocation across the endoplasmic reticulum membrane. Annu Rev Cell Biol. 1986;2:499–516. doi: 10.1146/annurev.cb.02.110186.002435. [DOI] [PubMed] [Google Scholar]
  75. Williams D. B., Swiedler S. J., Hart G. W. Intracellular transport of membrane glycoproteins: two closely related histocompatibility antigens differ in their rates of transit to the cell surface. J Cell Biol. 1985 Sep;101(3):725–734. doi: 10.1083/jcb.101.3.725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. von der Mark K., Gauss V., von der Mark H., Müller P. Relationship between cell shape and type of collagen synthesised as chondrocytes lose their cartilage phenotype in culture. Nature. 1977 Jun 9;267(5611):531–532. doi: 10.1038/267531a0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES