Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1989 Oct 1;109(4):1653–1664. doi: 10.1083/jcb.109.4.1653

Overexpression of the vimentin gene in transgenic mice inhibits normal lens cell differentiation

PMCID: PMC2115810  PMID: 2793935

Abstract

To investigate the role of the intermediate filament protein vimentin in the normal differentiation and morphogenesis of the eye lens fiber cells, we generated transgenic mice bearing multiple copies of the chicken vimentin gene. In most cases, the vimentin transgene was overexpressed in the lenses of these animals, reaching up to 10 times the endogenous levels. This high expression of vimentin interfered very strongly with the normal differentiation of the lens fibers. The normal fiber cell denucleation and elongation processes were impaired and the animals developed pronounced cataracts, followed by extensive lens degeneration. The age of appearance and extent of these abnormalities in the different transgenic lines were directly related to the vimentin level. Electron microscopic analysis revealed that the accumulated transgenic protein forms normal intermediate filaments.

Full Text

The Full Text of this article is available as a PDF (6.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aubin J. E., Osborn M., Franke W. W., Weber K. Intermediate filaments of the vimentin-type and the cytokeratin-type are distributed differently during mitosis. Exp Cell Res. 1980 Sep;129(1):149–165. doi: 10.1016/0014-4827(80)90340-7. [DOI] [PubMed] [Google Scholar]
  2. Bagchi M., Caporale M. J., Wechter R. S., Maisel H. Vimentin synthesis by ocular lens cells. Exp Eye Res. 1985 Mar;40(3):385–392. doi: 10.1016/0014-4835(85)90151-4. [DOI] [PubMed] [Google Scholar]
  3. Bloemendal H., Benedetti E. L., Ramaekers F., Dunia I. The lens cytoskeleton. Intermediate-sized filaments, their biosynthesis and association with plasma membranes. Mol Biol Rep. 1981 May 22;7(1-3):167–168. doi: 10.1007/BF00778749. [DOI] [PubMed] [Google Scholar]
  4. Bradley R. H., Ireland M., Maisel H. The cytoskeleton of chick lens cells. Exp Eye Res. 1979 Apr;28(4):441–453. doi: 10.1016/0014-4835(79)90119-2. [DOI] [PubMed] [Google Scholar]
  5. Breitman M. L., Clapoff S., Rossant J., Tsui L. C., Glode L. M., Maxwell I. H., Bernstein A. Genetic ablation: targeted expression of a toxin gene causes microphthalmia in transgenic mice. Science. 1987 Dec 11;238(4833):1563–1565. doi: 10.1126/science.3685993. [DOI] [PubMed] [Google Scholar]
  6. Brinster R. L., Chen H. Y., Trumbauer M. E., Yagle M. K., Palmiter R. D. Factors affecting the efficiency of introducing foreign DNA into mice by microinjecting eggs. Proc Natl Acad Sci U S A. 1985 Jul;82(13):4438–4442. doi: 10.1073/pnas.82.13.4438. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Capetanaki Y. G., Flytzanis C. N., Alonso A. Repression of the albumin gene in Novikoff hepatoma cells. Mol Cell Biol. 1982 Mar;2(3):258–266. doi: 10.1128/mcb.2.3.258. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Capetanaki Y. G., Ngai J., Flytzanis C. N., Lazarides E. Tissue-specific expression of two mRNA species transcribed from a single vimentin gene. Cell. 1983 Dec;35(2 Pt 1):411–420. doi: 10.1016/0092-8674(83)90174-5. [DOI] [PubMed] [Google Scholar]
  9. Capetanaki Y., Starnes S., Smith S. Expression of the chicken vimentin gene in transgenic mice: efficient assembly of the avian protein into the cytoskeleton. Proc Natl Acad Sci U S A. 1989 Jul;86(13):4882–4886. doi: 10.1073/pnas.86.13.4882. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
  11. Clark J. I., Mengel L., Bagg A., Benedek G. B. Cortical opacity, calcium concentration and fiber membrane structure in the calf lens. Exp Eye Res. 1980 Oct;31(4):399–410. doi: 10.1016/s0014-4835(80)80024-8. [DOI] [PubMed] [Google Scholar]
  12. Cress A. E., Kurath K. M. Identification of attachment proteins for DNA in Chinese hamster ovary cells. J Biol Chem. 1988 Dec 25;263(36):19678–19683. [PubMed] [Google Scholar]
  13. David-Ferreira K. L., David-Ferreira J. F. Association between intermediate-sized filaments and mitochondria in rat Leydig cells. Cell Biol Int Rep. 1980 Jul;4(7):655–662. doi: 10.1016/0309-1651(80)90204-0. [DOI] [PubMed] [Google Scholar]
  14. Dellagi K., Vainchenker W., Vinci G., Paulin D., Brouet J. C. Alteration of vimentin intermediate filament expression during differentiation of human hemopoietic cells. EMBO J. 1983;2(9):1509–1514. doi: 10.1002/j.1460-2075.1983.tb01615.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Ellis M., Alousi S., Lawniczak J., Maisel H., Welsh M. Studies on lens vimentin. Exp Eye Res. 1984 Feb;38(2):195–202. doi: 10.1016/0014-4835(84)90103-9. [DOI] [PubMed] [Google Scholar]
  16. Ferrari S., Battini R., Kaczmarek L., Rittling S., Calabretta B., de Riel J. K., Philiponis V., Wei J. F., Baserga R. Coding sequence and growth regulation of the human vimentin gene. Mol Cell Biol. 1986 Nov;6(11):3614–3620. doi: 10.1128/mcb.6.11.3614. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Geiger B., Singer S. J. Association of microtubules and intermediate filaments in chicken gizzard cells as detected by double immunofluorescence. Proc Natl Acad Sci U S A. 1980 Aug;77(8):4769–4773. doi: 10.1073/pnas.77.8.4769. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Georgatos S. D., Blobel G. Lamin B constitutes an intermediate filament attachment site at the nuclear envelope. J Cell Biol. 1987 Jul;105(1):117–125. doi: 10.1083/jcb.105.1.117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Georgatos S. D., Blobel G. Two distinct attachment sites for vimentin along the plasma membrane and the nuclear envelope in avian erythrocytes: a basis for a vectorial assembly of intermediate filaments. J Cell Biol. 1987 Jul;105(1):105–115. doi: 10.1083/jcb.105.1.105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Georgatos S. D., Marchesi V. T. The binding of vimentin to human erythrocyte membranes: a model system for the study of intermediate filament-membrane interactions. J Cell Biol. 1985 Jun;100(6):1955–1961. doi: 10.1083/jcb.100.6.1955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Georgatos S. D., Weaver D. C., Marchesi V. T. Site specificity in vimentin-membrane interactions: intermediate filament subunits associate with the plasma membrane via their head domains. J Cell Biol. 1985 Jun;100(6):1962–1967. doi: 10.1083/jcb.100.6.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Glasser S. R., Julian J. Intermediate filament protein as a marker of uterine stromal cell decidualization. Biol Reprod. 1986 Sep;35(2):463–474. doi: 10.1095/biolreprod35.2.463. [DOI] [PubMed] [Google Scholar]
  23. Goldman R. D., Goldman A. E., Green K. J., Jones J. C., Jones S. M., Yang H. Y. Intermediate filament networks: organization and possible functions of a diverse group of cytoskeletal elements. J Cell Sci Suppl. 1986;5:69–97. doi: 10.1242/jcs.1986.supplement_5.5. [DOI] [PubMed] [Google Scholar]
  24. Granger B. L., Lazarides E. Desmin and vimentin coexist at the periphery of the myofibril Z disc. Cell. 1979 Dec;18(4):1053–1063. doi: 10.1016/0092-8674(79)90218-6. [DOI] [PubMed] [Google Scholar]
  25. Granger B. L., Lazarides E. Expression of the intermediate-filament-associated protein synemin in chicken lens cells. Mol Cell Biol. 1984 Oct;4(10):1943–1950. doi: 10.1128/mcb.4.10.1943. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Granger B. L., Lazarides E. Structural associations of synemin and vimentin filaments in avian erythrocytes revealed by immunoelectron microscopy. Cell. 1982 Aug;30(1):263–275. doi: 10.1016/0092-8674(82)90032-0. [DOI] [PubMed] [Google Scholar]
  27. Granger B. L., Repasky E. A., Lazarides E. Synemin and vimentin are components of intermediate filaments in avian erythrocytes. J Cell Biol. 1982 Feb;92(2):299–312. doi: 10.1083/jcb.92.2.299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Green K. J., Goldman R. D. Evidence for an interaction between the cell surface and intermediate filaments in cultured fibroblasts. Cell Motil Cytoskeleton. 1986;6(4):389–405. doi: 10.1002/cm.970060405. [DOI] [PubMed] [Google Scholar]
  29. Hamai Y., Fukui H. N., Kuwabara T. Morphology of hereditary mouse cataract. Exp Eye Res. 1974 Jun;18(6):537–546. doi: 10.1016/0014-4835(74)90060-8. [DOI] [PubMed] [Google Scholar]
  30. Hightower K. R., Reddy V. N. Ca++-induced cataract. Invest Ophthalmol Vis Sci. 1982 Feb;22(2):263–267. [PubMed] [Google Scholar]
  31. Hirschhorn R. R., Aller P., Yuan Z. A., Gibson C. W., Baserga R. Cell-cycle-specific cDNAs from mammalian cells temperature sensitive for growth. Proc Natl Acad Sci U S A. 1984 Oct;81(19):6004–6008. doi: 10.1073/pnas.81.19.6004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Jimbow K., Fitzpatrick T. B. Changes in distribution pattern of cytoplasmic filaments in human melanocytes during ultraviolet-mediated melanin pigmentation. The role of the 100-Angstrom filaments in the elongation of melanocytic dendrites and in the movement and transfer of melanosomes. J Cell Biol. 1975 May;65(2):481–488. doi: 10.1083/jcb.65.2.481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Khillan J. S., Oskarsson M. K., Propst F., Kuwabara T., Vande Woude G. F., Westphal H. Defects in lens fiber differentiation are linked to c-mos overexpression in transgenic mice. Genes Dev. 1987 Dec;1(10):1327–1335. doi: 10.1101/gad.1.10.1327. [DOI] [PubMed] [Google Scholar]
  34. Krimpenfort P. J., Schaart G., Pieper F. R., Ramaekers F. C., Cuypers H. T., van den Heuvel R. M., Vree Egberts W. T., van Eys G. J., Berns A., Bloemendal H. Tissue-specific expression of a vimentin--desmin hybrid gene in transgenic mice. EMBO J. 1988 Apr;7(4):941–947. doi: 10.1002/j.1460-2075.1988.tb02899.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Landel C. P., Zhao J., Bok D., Evans G. A. Lens-specific expression of recombinant ricin induces developmental defects in the eyes of transgenic mice. Genes Dev. 1988 Sep;2(9):1168–1178. doi: 10.1101/gad.2.9.1168. [DOI] [PubMed] [Google Scholar]
  36. Laurila P., Virtanen I., Stenman S. Intermediate filaments in enucleation of human fibroblasts. Exp Cell Res. 1981 Jan;131(1):41–46. doi: 10.1016/0014-4827(81)90403-1. [DOI] [PubMed] [Google Scholar]
  37. Lazarides E. Intermediate filaments: a chemically heterogeneous, developmentally regulated class of proteins. Annu Rev Biochem. 1982;51:219–250. doi: 10.1146/annurev.bi.51.070182.001251. [DOI] [PubMed] [Google Scholar]
  38. Lehto V. P., Virtanen I., Kurki P. Intermediate filaments anchor the nuclei in nuclear monolayers of cultured human fibroblasts. Nature. 1978 Mar 9;272(5649):175–177. doi: 10.1038/272175a0. [DOI] [PubMed] [Google Scholar]
  39. Mahon K. A., Chepelinsky A. B., Khillan J. S., Overbeek P. A., Piatigorsky J., Westphal H. Oncogenesis of the lens in transgenic mice. Science. 1987 Mar 27;235(4796):1622–1628. doi: 10.1126/science.3029873. [DOI] [PubMed] [Google Scholar]
  40. Nelson W. J., Traub P. Properties of Ca2+-activated protease specific for the intermediate-sized filament protein vimentin in Ehrlich-ascites-tumour cells. Eur J Biochem. 1981 May;116(1):51–57. doi: 10.1111/j.1432-1033.1981.tb05299.x. [DOI] [PubMed] [Google Scholar]
  41. Nelson W. J., Traub P. Purification and further characterization of the Ca2+-activated proteinase specific for the intermediate filament proteins vimentin and desmin. J Biol Chem. 1982 May 25;257(10):5544–5553. [PubMed] [Google Scholar]
  42. Ngai J., Capetanaki Y. G., Lazarides E. Differentiation of murine erythroleukemia cells results in the rapid repression of vimentin gene expression. J Cell Biol. 1984 Jul;99(1 Pt 1):306–314. doi: 10.1083/jcb.99.1.306. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. O'Farrell P. H. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975 May 25;250(10):4007–4021. [PMC free article] [PubMed] [Google Scholar]
  44. Olson E. N., Capetanaki Y. G. Developmental regulation of intermediate filament and actin mRNAs during myogenesis is disrupted by oncogenic ras genes. Oncogene. 1989 Jul;4(7):907–913. [PubMed] [Google Scholar]
  45. Osborn M., Geisler N., Shaw G., Sharp G., Weber K. Intermediate filaments. Cold Spring Harb Symp Quant Biol. 1982;46(Pt 1):413–429. doi: 10.1101/sqb.1982.046.01.040. [DOI] [PubMed] [Google Scholar]
  46. Piatigorsky J. Lens differentiation in vertebrates. A review of cellular and molecular features. Differentiation. 1981;19(3):134–153. doi: 10.1111/j.1432-0436.1981.tb01141.x. [DOI] [PubMed] [Google Scholar]
  47. Piatigorsky J., Webster H. D., Craig S. P. Protein synthesis and ultrastructure during the formation of embryonic chick lens fibers in vivo and in vitro. Dev Biol. 1972 Feb;27(2):176–189. doi: 10.1016/0012-1606(72)90096-6. [DOI] [PubMed] [Google Scholar]
  48. Piatigorsky J., Webster H. de F., Wollberg M. Cell elongation in the cultured embryonic chick lens epithelium with and without protein synthesis. Involvement of microtubules. J Cell Biol. 1972 Oct;55(1):82–92. doi: 10.1083/jcb.55.1.82. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Ramaekers F. C., Osborn M., Schimid E., Weber K., Bloemendal H., Franke W. W. Identification of the cytoskeletal proteins in lens-forming cells, a special epitheloid cell type. Exp Cell Res. 1980 Jun;127(2):309–327. doi: 10.1016/0014-4827(80)90437-1. [DOI] [PubMed] [Google Scholar]
  50. Ramaekers F. C., Poels L. G., Jap P. H., Bloemendal H. Simultaneous demonstration of microfilaments and intermediate-sized filaments in the lens by double immunofluorescence. Exp Eye Res. 1982 Oct;35(4):363–369. doi: 10.1016/0014-4835(82)90099-9. [DOI] [PubMed] [Google Scholar]
  51. Rittling S. R., Baserga R. Functional analysis and growth factor regulation of the human vimentin promoter. Mol Cell Biol. 1987 Nov;7(11):3908–3915. doi: 10.1128/mcb.7.11.3908. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Shoeman R. L., Wadle S., Scherbarth A., Traub P. The binding in vitro of the intermediate filament protein vimentin to synthetic oligonucleotides containing telomere sequences. J Biol Chem. 1988 Dec 15;263(35):18744–18749. [PubMed] [Google Scholar]
  53. Starger J. M., Brown W. E., Goldman A. E., Goldman R. D. Biochemical and immunological analysis of rapidly purified 10-nm filaments from baby hamster kidney (BHK-21) cells. J Cell Biol. 1978 Jul;78(1):93–109. doi: 10.1083/jcb.78.1.93. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Tapscott S. J., Bennett G. S., Toyama Y., Kleinbart F., Holtzer H. Intermediate filament proteins in the developing chick spinal cord. Dev Biol. 1981 Aug;86(1):40–54. doi: 10.1016/0012-1606(81)90313-4. [DOI] [PubMed] [Google Scholar]
  55. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Wang E., Goldman R. D. Functions of cytoplasmic fibers in intracellular movements in BHK-21 cells. J Cell Biol. 1978 Dec;79(3):708–726. doi: 10.1083/jcb.79.3.708. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Woodcock C. L. Nucleus-associated intermediate filaments from chicken erythrocytes. J Cell Biol. 1980 Jun;85(3):881–889. doi: 10.1083/jcb.85.3.881. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Zehner Z. E., Li Y., Roe B. A., Paterson B. M., Sax C. M. The chicken vimentin gene. Nucleotide sequence, regulatory elements, and comparison to the hamster gene. J Biol Chem. 1987 Jun 15;262(17):8112–8120. [PubMed] [Google Scholar]
  59. Zehner Z. E., Paterson B. M. Characterization of the chicken vimentin gene: single copy gene producing multiple mRNAs. Proc Natl Acad Sci U S A. 1983 Feb;80(4):911–915. doi: 10.1073/pnas.80.4.911. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Zieve G. W., Heidemann S. R., McIntosh J. R. Isolation and partial characterization of a cage of filaments that surrounds the mammalian mitotic spindle. J Cell Biol. 1980 Oct;87(1):160–169. doi: 10.1083/jcb.87.1.160. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES