Abstract
Primary chondrocytes from whole chick embryo sterna can be maintained in suspension culture stabilized with agarose for extended periods of time. In the absence of FBS, the cells remain viable only when seeded at high densities. They do not proliferate at a high rate but they deposit extracellular matrix with fibrils resembling those of authentic embryonic cartilage in their appearance and collagen composition. The cells exhibit many morphological and biochemical characteristics of resting chondrocytes and they do not produce collagen X, a marker for hypertrophic cartilage undergoing endochondral ossification. At low density, cells survive in culture without FBS when the media are conditioned by chondrocytes grown at high density. Thus, resting cartilage cells in agarose cultures can produce factors required for their own viability. Addition of FBS to the culture media leads to profound changes in the phenotype of chondrocytes seeded at low density. Cells form colonies at a high rate and assume properties of hypertrophic cells, including the synthesis of collagen X. They extensively deposit extracellular matrix resembling more closely that of adult rather than embryonic cartilage.
Full Text
The Full Text of this article is available as a PDF (3.7 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abbott J., Holtzer H. The loss of phenotypic traits by differentiated cells, V. The effect of 5-bromodeoxyuridine on cloned chondrocytes. Proc Natl Acad Sci U S A. 1968 Apr;59(4):1144–1151. doi: 10.1073/pnas.59.4.1144. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Adams S. L., Boettiger D., Focht R. J., Holtzer H., Pacifici M. Regulation of the synthesis of extracellular matrix components in chondroblasts transformed by a temperature-sensitive mutant of Rous sarcoma virus. Cell. 1982 Sep;30(2):373–384. doi: 10.1016/0092-8674(82)90235-5. [DOI] [PubMed] [Google Scholar]
- Allebach E. S., Boettiger D., Pacifici M., Adams S. L. Control of types I and II collagen and fibronectin gene expression in chondrocytes delineated by viral transformation. Mol Cell Biol. 1985 May;5(5):1002–1008. doi: 10.1128/mcb.5.5.1002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Benya P. D., Brown P. D., Padilla S. R. Microfilament modification by dihydrocytochalasin B causes retinoic acid-modulated chondrocytes to reexpress the differentiated collagen phenotype without a change in shape. J Cell Biol. 1988 Jan;106(1):161–170. doi: 10.1083/jcb.106.1.161. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Benya P. D., Shaffer J. D. Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell. 1982 Aug;30(1):215–224. doi: 10.1016/0092-8674(82)90027-7. [DOI] [PubMed] [Google Scholar]
- Bruckner P., Mendler M., Steinmann B., Huber S., Winterhalter K. H. The structure of human collagen type IX and its organization in fetal and infant cartilage fibrils. J Biol Chem. 1988 Nov 15;263(32):16911–16917. [PubMed] [Google Scholar]
- Canalis E., McCarthy T., Centrella M. Growth factors and the regulation of bone remodeling. J Clin Invest. 1988 Feb;81(2):277–281. doi: 10.1172/JCI113318. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Capasso O., Tajana G., Cancedda R. Location of 64K collagen producer chondrocytes in developing chicken embryo tibiae. Mol Cell Biol. 1984 Jun;4(6):1163–1168. doi: 10.1128/mcb.4.6.1163. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Castagnola P., Dozin B., Moro G., Cancedda R. Changes in the expression of collagen genes show two stages in chondrocyte differentiation in vitro. J Cell Biol. 1988 Feb;106(2):461–467. doi: 10.1083/jcb.106.2.461. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Castagnola P., Moro G., Descalzi-Cancedda F., Cancedda R. Type X collagen synthesis during in vitro development of chick embryo tibial chondrocytes. J Cell Biol. 1986 Jun;102(6):2310–2317. doi: 10.1083/jcb.102.6.2310. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Choi Y. C., Morris G. M., Lee F. S., Sokoloff L. The effect of serum on monolayer cell culture of mammalian articular chondrocytes. Connect Tissue Res. 1980;7(2):105–112. doi: 10.3109/03008208009152295. [DOI] [PubMed] [Google Scholar]
- Finer M. H., Gerstenfeld L. C., Young D., Doty P., Boedtker H. Collagen expression in embryonic chicken chondrocytes treated with phorbol myristate acetate. Mol Cell Biol. 1985 Jun;5(6):1415–1424. doi: 10.1128/mcb.5.6.1415. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gibson G. J., Beaumont B. W., Flint M. H. Synthesis of a low molecular weight collagen by chondrocytes from the presumptive calcification region of the embryonic chick sterna: the influence of culture with collagen gels. J Cell Biol. 1984 Jul;99(1 Pt 1):208–216. doi: 10.1083/jcb.99.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gibson G. J., Schor S. L., Grant M. E. Effects of matrix macromolecules on chondrocyte gene expression: synthesis of a low molecular weight collagen species by cells cultured within collagen gels. J Cell Biol. 1982 Jun;93(3):767–774. doi: 10.1083/jcb.93.3.767. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grisham M. B., Jefferson M. M., Thomas E. L. Role of monochloramine in the oxidation of erythrocyte hemoglobin by stimulated neutrophils. J Biol Chem. 1984 Jun 10;259(11):6757–6765. [PubMed] [Google Scholar]
- Hiraki Y., Kato Y., Inoue H., Suzuki F. Stimulation of DNA synthesis in quiescent rabbit chondrocytes in culture by limited exposure to somatomedin-like growth factors. Eur J Biochem. 1986 Jul 15;158(2):333–337. doi: 10.1111/j.1432-1033.1986.tb09755.x. [DOI] [PubMed] [Google Scholar]
- Horwitz A. L., Dorfman A. The growth of cartilage cells in soft agar and liquid suspension. J Cell Biol. 1970 May;45(2):434–438. doi: 10.1083/jcb.45.2.434. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hunziker E. B., Schenk R. K., Cruz-Orive L. M. Quantitation of chondrocyte performance in growth-plate cartilage during longitudinal bone growth. J Bone Joint Surg Am. 1987 Feb;69(2):162–173. [PubMed] [Google Scholar]
- Jennings S. D., Ham R. G. Clonal growth of primary cultures of human hyaline chondrocytes in a defined medium. Cell Biol Int Rep. 1983 Feb;7(2):149–159. doi: 10.1016/0309-1651(83)90028-0. [DOI] [PubMed] [Google Scholar]
- Kim Y. J., Sah R. L., Doong J. Y., Grodzinsky A. J. Fluorometric assay of DNA in cartilage explants using Hoechst 33258. Anal Biochem. 1988 Oct;174(1):168–176. doi: 10.1016/0003-2697(88)90532-5. [DOI] [PubMed] [Google Scholar]
- Labarca C., Paigen K. A simple, rapid, and sensitive DNA assay procedure. Anal Biochem. 1980 Mar 1;102(2):344–352. doi: 10.1016/0003-2697(80)90165-7. [DOI] [PubMed] [Google Scholar]
- Lindahl A., Isgaard J., Carlsson L., Isaksson O. G. Differential effects of growth hormone and insulin-like growth factor I on colony formation of epiphyseal chondrocytes in suspension culture in rats of different ages. Endocrinology. 1987 Sep;121(3):1061–1069. doi: 10.1210/endo-121-3-1061. [DOI] [PubMed] [Google Scholar]
- Malemud C. J., Papay R. S. Rabbit chondrocytes maintained in serum-free medium. I. Synthesis and secretion of hydrodynamically-small proteoglycans. Exp Cell Res. 1986 Dec;167(2):440–452. doi: 10.1016/0014-4827(86)90184-9. [DOI] [PubMed] [Google Scholar]
- Mayne R., Vail M. S., Mayne P. M., Miller E. J. Changes in type of collagen synthesized as clones of chick chondrocytes grow and eventually lose division capacity. Proc Natl Acad Sci U S A. 1976 May;73(5):1674–1678. doi: 10.1073/pnas.73.5.1674. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mayne R., Vail M. S., Miller E. J. Analysis of changes in collagen biosynthesis that occur when chick chondrocytes are grown in 5-bromo-2'-deoxyuridine. Proc Natl Acad Sci U S A. 1975 Nov;72(11):4511–4515. doi: 10.1073/pnas.72.11.4511. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McClure J., Bates G. P., Rowston H., Grant M. E. A comparison of the morphological, histochemical and biochemical features of embryonic chick sternal chondrocytes in vivo with chondrocytes cultured in three-dimensional collagen gels. Bone Miner. 1988 Jan;3(3):235–247. [PubMed] [Google Scholar]
- Mendler M., Eich-Bender S. G., Vaughan L., Winterhalter K. H., Bruckner P. Cartilage contains mixed fibrils of collagen types II, IX, and XI. J Cell Biol. 1989 Jan;108(1):191–197. doi: 10.1083/jcb.108.1.191. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Müller-Glauser W., Humbel B., Glatt M., Sträuli P., Winterhalter K. H., Bruckner P. On the role of type IX collagen in the extracellular matrix of cartilage: type IX collagen is localized to intersections of collagen fibrils. J Cell Biol. 1986 May;102(5):1931–1939. doi: 10.1083/jcb.102.5.1931. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rifas L., Uitto J., Memoli V. A., Kuettner K. E., Henry R. W., Peck W. A. Selective emergence of differentiated chondrocytes during serum-free culture of cells derived from fetal rat calvaria. J Cell Biol. 1982 Feb;92(2):493–504. doi: 10.1083/jcb.92.2.493. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schmid T. M., Conrad H. E. A unique low molecular weight collagen secreted by cultured chick embryo chondrocytes. J Biol Chem. 1982 Oct 25;257(20):12444–12450. [PubMed] [Google Scholar]
- Schmid T. M., Linsenmayer T. F. Immunohistochemical localization of short chain cartilage collagen (type X) in avian tissues. J Cell Biol. 1985 Feb;100(2):598–605. doi: 10.1083/jcb.100.2.598. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schwartz E. R., Sugumaran G. Characteristics of human chondrocyte cultures in completely defined medium. In Vitro. 1982 Mar;18(3 Pt 1):254–260. doi: 10.1007/BF02618579. [DOI] [PubMed] [Google Scholar]
- Seyedin S. M., Segarini P. R., Rosen D. M., Thompson A. Y., Bentz H., Graycar J. Cartilage-inducing factor-B is a unique protein structurally and functionally related to transforming growth factor-beta. J Biol Chem. 1987 Feb 15;262(5):1946–1949. [PubMed] [Google Scholar]
- Seyedin S. M., Thomas T. C., Thompson A. Y., Rosen D. M., Piez K. A. Purification and characterization of two cartilage-inducing factors from bovine demineralized bone. Proc Natl Acad Sci U S A. 1985 Apr;82(8):2267–2271. doi: 10.1073/pnas.82.8.2267. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Seyedin S. M., Thompson A. Y., Bentz H., Rosen D. M., McPherson J. M., Conti A., Siegel N. R., Galluppi G. R., Piez K. A. Cartilage-inducing factor-A. Apparent identity to transforming growth factor-beta. J Biol Chem. 1986 May 5;261(13):5693–5695. [PubMed] [Google Scholar]
- Solursh M., Jensen K. L., Reiter R. S., Schmid T. M., Linsenmayer T. F. Environmental regulation of type X collagen production by cultures of limb mesenchyme, mesectoderm, and sternal chondrocytes. Dev Biol. 1986 Sep;117(1):90–101. doi: 10.1016/0012-1606(86)90351-9. [DOI] [PubMed] [Google Scholar]
- Solursh M., Jensen K. L., Zanetti N. C., Linsenmayer T. F., Reiter R. S. Extracellular matrix mediates epithelial effects on chondrogenesis in vitro. Dev Biol. 1984 Oct;105(2):451–457. doi: 10.1016/0012-1606(84)90302-6. [DOI] [PubMed] [Google Scholar]
- Solursh M., Meier S. Effects of cell density on the expression of differentiation by chick embryo chondrocytes. J Exp Zool. 1974 Mar;187(3):311–322. doi: 10.1002/jez.1401870302. [DOI] [PubMed] [Google Scholar]
- Solursh M., Reiter R. S. The enhancement of in vitro survival and chondrogenesis of limb bud cells by cartilage conditioned medium. Dev Biol. 1975 Jun;44(2):278–287. doi: 10.1016/0012-1606(75)90398-x. [DOI] [PubMed] [Google Scholar]
- TRUETA J., LITTLE K. The vascular contribution to osteogenesis. II. Studies with the electron microscope. J Bone Joint Surg Br. 1960 May;42-B:367–376. doi: 10.1302/0301-620X.42B2.367. [DOI] [PubMed] [Google Scholar]
- TRUETA J., MORGAN J. D. The vascular contribution to osteogenesis. I. Studies by the injection method. J Bone Joint Surg Br. 1960 Feb;42-B:97–109. doi: 10.1302/0301-620X.42B1.97. [DOI] [PubMed] [Google Scholar]
- Tacchetti C., Quarto R., Nitsch L., Hartmann D. J., Cancedda R. In vitro morphogenesis of chick embryo hypertrophic cartilage. J Cell Biol. 1987 Aug;105(2):999–1006. doi: 10.1083/jcb.105.2.999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Trueta J., Amato V. P. The vascular contribution to osteogenesis. III. Changes in the growth cartilage caused by experimentally induced ischaemia. J Bone Joint Surg Br. 1960 Aug;42-B:571–587. doi: 10.1302/0301-620X.42B3.571. [DOI] [PubMed] [Google Scholar]
- Vaughan L., Mendler M., Huber S., Bruckner P., Winterhalter K. H., Irwin M. I., Mayne R. D-periodic distribution of collagen type IX along cartilage fibrils. J Cell Biol. 1988 Mar;106(3):991–997. doi: 10.1083/jcb.106.3.991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zanetti N. C., Solursh M. Induction of chondrogenesis in limb mesenchymal cultures by disruption of the actin cytoskeleton. J Cell Biol. 1984 Jul;99(1 Pt 1):115–123. doi: 10.1083/jcb.99.1.115. [DOI] [PMC free article] [PubMed] [Google Scholar]
- von der Mark K., Gauss V., von der Mark H., Müller P. Relationship between cell shape and type of collagen synthesised as chondrocytes lose their cartilage phenotype in culture. Nature. 1977 Jun 9;267(5611):531–532. doi: 10.1038/267531a0. [DOI] [PubMed] [Google Scholar]
- von der Mark K. Immunological studies on collagen type transition in chondrogenesis. Curr Top Dev Biol. 1980;14(Pt 2):199–225. doi: 10.1016/s0070-2153(08)60195-7. [DOI] [PubMed] [Google Scholar]