Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1989 Nov 1;109(5):2405–2416. doi: 10.1083/jcb.109.5.2405

In vivo analysis of glial cell phenotypes during a viral demyelinating disease in mice

PMCID: PMC2115831  PMID: 2553746

Abstract

C57 BL/6N mice injected intracranially with the A59 strain of mouse hepatitis virus exhibit extensive viral replication in glial cells of the spinal cord and develop demyelinating lesions followed by virus clearing and remyelination. To study how different glial cell types are affected by the disease process, we combine three-color immunofluorescence labeling with tritiated thymidine autoradiography on 1-micron frozen sections of spinal cord. We use three different glial cell specific antibodies (a) to 2',3' cyclic-nucleotide 3' phosphohydrolase (CNP) expressed by oligodendrocytes, (b) to glial fibrillary acidic protein (GFAP) expressed by astrocytes, and (c) the O4 antibody which binds to O-2A progenitor cells in the rat. These progenitor cells, which give rise to oligodendrocytes and type 2 astrocytes and react with the O4 antibody in the adult central nervous system, were present but rare in the spinal cord of uninfected mice. In contrast, cells with the O-2A progenitor phenotype (O4 + only) were increased in number at one week post viral inoculation (1 WPI) and were the only immunostained cells labeled at that time by a 2-h in vivo pulse of tritiated thymidine. Both GFAP+ only and GFAP+, O4+ astrocytes were also increased in the spinal cord at 1 WPI. Between two and four WPI, the infected spinal cord was characterized by the loss of (CNP+, O4+) oligodendrocytes within demyelinating lesions and the presence of O-2A progenitor cells and O4+, GFAP+ astrocytes, both of which could be labeled with thymidine. As remyelination proceeded, CNP immunostaining returned to near normal and tritiated thymidine injected previously during the demyelinating phase now appeared in CNP+ oligodendrocytes. Thus O4 positive O-2A progenitor cells proliferate early in the course of the demyelinating disease, while CNP positive oligodendrocytes do not. The timing of events suggests that the O-2A progenitors may give rise to new oligodendrocytes and to type 2 astrocytes, both of which are likely to be instrumental in the remyelination process.

Full Text

The Full Text of this article is available as a PDF (5.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arenella L. S., Herndon R. M. Mature oligodendrocytes. Division following experimental demyelination in adult animals. Arch Neurol. 1984 Nov;41(11):1162–1165. doi: 10.1001/archneur.1984.04050220060015. [DOI] [PubMed] [Google Scholar]
  2. Behar T., McMorris F. A., Novotný E. A., Barker J. L., Dubois-Dalcq M. Growth and differentiation properties of O-2A progenitors purified from rat cerebral hemispheres. J Neurosci Res. 1988 Oct-Dec;21(2-4):168–180. doi: 10.1002/jnr.490210209. [DOI] [PubMed] [Google Scholar]
  3. Benveniste E. N., Merrill J. E. Stimulation of oligodendroglial proliferation and maturation by interleukin-2. Nature. 1986 Jun 5;321(6070):610–613. doi: 10.1038/321610a0. [DOI] [PubMed] [Google Scholar]
  4. Braun P. E., Sandillon F., Edwards A., Matthieu J. M., Privat A. Immunocytochemical localization by electron microscopy of 2'3'-cyclic nucleotide 3'-phosphodiesterase in developing oligodendrocytes of normal and mutant brain. J Neurosci. 1988 Aug;8(8):3057–3066. doi: 10.1523/JNEUROSCI.08-08-03057.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Carroll W. M., Jennings A. R., Mastaglia F. L. Reactive glial cells in CNS demyelination contain both GC and GFAP. Brain Res. 1987 May 19;411(2):364–369. doi: 10.1016/0006-8993(87)91088-2. [DOI] [PubMed] [Google Scholar]
  6. Choi B. H., Kim R. C. Expression of glial fibrillary acidic protein in immature oligodendroglia. Science. 1984 Jan 27;223(4634):407–409. doi: 10.1126/science.6197755. [DOI] [PubMed] [Google Scholar]
  7. David S., Miller R. H., Patel R., Raff M. C. Effects of neonatal transection on glial cell development in the rat optic nerve: evidence that the oligodendrocyte-type 2 astrocyte cell lineage depends on axons for its survival. J Neurocytol. 1984 Dec;13(6):961–974. doi: 10.1007/BF01148596. [DOI] [PubMed] [Google Scholar]
  8. Dubois-Dalcq M. Characterization of a slowly proliferative cell along the oligodendrocyte differentiation pathway. EMBO J. 1987 Sep;6(9):2587–2595. doi: 10.1002/j.1460-2075.1987.tb02549.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Eisenbarth G. S., Walsh F. S., Nirenberg M. Monoclonal antibody to a plasma membrane antigen of neurons. Proc Natl Acad Sci U S A. 1979 Oct;76(10):4913–4917. doi: 10.1073/pnas.76.10.4913. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ffrench-Constant C., Raff M. C. The oligodendrocyte-type-2 astrocyte cell lineage is specialized for myelination. 1986 Sep 25-Oct 1Nature. 323(6086):335–338. doi: 10.1038/323335a0. [DOI] [PubMed] [Google Scholar]
  11. Griffiths G., McDowall A., Back R., Dubochet J. On the preparation of cryosections for immunocytochemistry. J Ultrastruct Res. 1984 Oct;89(1):65–78. doi: 10.1016/s0022-5320(84)80024-6. [DOI] [PubMed] [Google Scholar]
  12. Herndon R. M., Price D. L., Weiner L. P. Regeneration of oligodendroglia during recovery from demyelinating disease. Science. 1977 Feb 18;195(4279):693–694. doi: 10.1126/science.190678. [DOI] [PubMed] [Google Scholar]
  13. Hirano M., Goldman J. E. Gliogenesis in rat spinal cord: evidence for origin of astrocytes and oligodendrocytes from radial precursors. J Neurosci Res. 1988 Oct-Dec;21(2-4):155–167. doi: 10.1002/jnr.490210208. [DOI] [PubMed] [Google Scholar]
  14. Hughes S. M., Raff M. C. An inducer protein may control the timing of fate switching in a bipotential glial progenitor cell in rat optic nerve. Development. 1987 Sep;101(1):157–167. [PubMed] [Google Scholar]
  15. Jordan C., Friedrich V., Jr, Dubois-Dalcq M. In situ hybridization analysis of myelin gene transcripts in developing mouse spinal cord. J Neurosci. 1989 Jan;9(1):248–257. doi: 10.1523/JNEUROSCI.09-01-00248.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Keilhauer G., Meier D. H., Kuhlmann-Krieg S., Nieke J., Schachner M. Astrocytes support incomplete differentiation of an oligodendrocyte precursor cell. EMBO J. 1985 Oct;4(10):2499–2504. doi: 10.1002/j.1460-2075.1985.tb03962.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Khalfan H., Abuknesha R., Rand-Weaver M., Price R. G., Robinson D. Aminomethyl coumarin acetic acid: a new fluorescent labelling agent for proteins. Histochem J. 1986 Sep;18(9):497–499. doi: 10.1007/BF01675617. [DOI] [PubMed] [Google Scholar]
  18. Kim S. U., Moretto G., Lee V., Yu R. K. Neuroimmunology of gangliosides in human neurons and glial cells in culture. J Neurosci Res. 1986;15(3):303–321. doi: 10.1002/jnr.490150303. [DOI] [PubMed] [Google Scholar]
  19. Kristensson K., Holmes K. V., Duchala C. S., Zeller N. K., Lazzarini R. A., Dubois-Dalcq M. Increased levels of myelin basic protein transcripts in virus-induced demyelination. Nature. 1986 Aug 7;322(6079):544–547. doi: 10.1038/322544a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lavi E., Gilden D. H., Highkin M. K., Weiss S. R. Persistence of mouse hepatitis virus A59 RNA in a slow virus demyelinating infection in mice as detected by in situ hybridization. J Virol. 1984 Aug;51(2):563–566. doi: 10.1128/jvi.51.2.563-566.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lavi E., Gilden D. H., Wroblewska Z., Rorke L. B., Weiss S. R. Experimental demyelination produced by the A59 strain of mouse hepatitis virus. Neurology. 1984 May;34(5):597–603. doi: 10.1212/wnl.34.5.597. [DOI] [PubMed] [Google Scholar]
  22. LeVine S. M., Goldman J. E. Embryonic divergence of oligodendrocyte and astrocyte lineages in developing rat cerebrum. J Neurosci. 1988 Nov;8(11):3992–4006. doi: 10.1523/JNEUROSCI.08-11-03992.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Lee V. M., Page C. D., Wu H. L., Schlaepfer W. W. Monoclonal antibodies to gel-excised glial filament protein and their reactivities with other intermediate filament proteins. J Neurochem. 1984 Jan;42(1):25–32. doi: 10.1111/j.1471-4159.1984.tb09692.x. [DOI] [PubMed] [Google Scholar]
  24. Lillien L. E., Sendtner M., Rohrer H., Hughes S. M., Raff M. C. Type-2 astrocyte development in rat brain cultures is initiated by a CNTF-like protein produced by type-1 astrocytes. Neuron. 1988 Aug;1(6):485–494. doi: 10.1016/0896-6273(88)90179-1. [DOI] [PubMed] [Google Scholar]
  25. Liuzzi F. J., Miller R. H. Radially oriented astrocytes in the normal adult rat spinal cord. Brain Res. 1987 Feb 17;403(2):385–388. doi: 10.1016/0006-8993(87)90081-3. [DOI] [PubMed] [Google Scholar]
  26. Ludwin S. K., Bakker D. A. Can oligodendrocytes attached to myelin proliferate? J Neurosci. 1988 Apr;8(4):1239–1244. doi: 10.1523/JNEUROSCI.08-04-01239.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Ludwin S. K. Pathology of demyelination and remyelination. Adv Neurol. 1981;31:123–168. [PubMed] [Google Scholar]
  28. Magnani J. L., Nilsson B., Brockhaus M., Zopf D., Steplewski Z., Koprowski H., Ginsburg V. A monoclonal antibody-defined antigen associated with gastrointestinal cancer is a ganglioside containing sialylated lacto-N-fucopentaose II. J Biol Chem. 1982 Dec 10;257(23):14365–14369. [PubMed] [Google Scholar]
  29. McMorris F. A., Dubois-Dalcq M. Insulin-like growth factor I promotes cell proliferation and oligodendroglial commitment in rat glial progenitor cells developing in vitro. J Neurosci Res. 1988 Oct-Dec;21(2-4):199–209. doi: 10.1002/jnr.490210212. [DOI] [PubMed] [Google Scholar]
  30. McMorris F. A., Kim S. U., Sprinkle T. J. Intracellular localization of 2',3'-cyclic nucleotide 3'-phosphohydrolase in rat oligodendrocytes and C6 glioma cells, and effect of cell maturation and enzyme induction on localization. Brain Res. 1984 Jan 30;292(1):123–131. doi: 10.1016/0006-8993(84)90896-5. [DOI] [PubMed] [Google Scholar]
  31. Miller R. H., David S., Patel R., Abney E. R., Raff M. C. A quantitative immunohistochemical study of macroglial cell development in the rat optic nerve: in vivo evidence for two distinct astrocyte lineages. Dev Biol. 1985 Sep;111(1):35–41. doi: 10.1016/0012-1606(85)90432-4. [DOI] [PubMed] [Google Scholar]
  32. Miller R. H., Raff M. C. Fibrous and protoplasmic astrocytes are biochemically and developmentally distinct. J Neurosci. 1984 Feb;4(2):585–592. doi: 10.1523/JNEUROSCI.04-02-00585.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Nieto-Sampedro M., Manthrope M., Barbin G., Varon S., Cotman C. W. Injury-induced neuronotrophic activity in adult rat brain: correlation with survival of delayed implants in the wound cavity. J Neurosci. 1983 Nov;3(11):2219–2229. doi: 10.1523/JNEUROSCI.03-11-02219.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Noble M., Murray K., Stroobant P., Waterfield M. D., Riddle P. Platelet-derived growth factor promotes division and motility and inhibits premature differentiation of the oligodendrocyte/type-2 astrocyte progenitor cell. Nature. 1988 Jun 9;333(6173):560–562. doi: 10.1038/333560a0. [DOI] [PubMed] [Google Scholar]
  35. Raff M. C., Abney E. R., Miller R. H. Two glial cell lineages diverge prenatally in rat optic nerve. Dev Biol. 1984 Nov;106(1):53–60. doi: 10.1016/0012-1606(84)90060-5. [DOI] [PubMed] [Google Scholar]
  36. Raff M. C., Miller R. H., Noble M. A glial progenitor cell that develops in vitro into an astrocyte or an oligodendrocyte depending on culture medium. Nature. 1983 Jun 2;303(5916):390–396. doi: 10.1038/303390a0. [DOI] [PubMed] [Google Scholar]
  37. Raff M. C., Williams B. P., Miller R. H. The in vitro differentiation of a bipotential glial progenitor cell. EMBO J. 1984 Aug;3(8):1857–1864. doi: 10.1002/j.1460-2075.1984.tb02059.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Raine C. S., Moore G. R., Hintzen R., Traugott U. Induction of oligodendrocyte proliferation and remyelination after chronic demyelination. Relevance to multiple sclerosis. Lab Invest. 1988 Oct;59(4):467–476. [PubMed] [Google Scholar]
  39. Reynolds R., Wilkin G. P. Development of macroglial cells in rat cerebellum. II. An in situ immunohistochemical study of oligodendroglial lineage from precursor to mature myelinating cell. Development. 1988 Feb;102(2):409–425. doi: 10.1242/dev.102.2.409. [DOI] [PubMed] [Google Scholar]
  40. Richardson W. D., Pringle N., Mosley M. J., Westermark B., Dubois-Dalcq M. A role for platelet-derived growth factor in normal gliogenesis in the central nervous system. Cell. 1988 Apr 22;53(2):309–319. doi: 10.1016/0092-8674(88)90392-3. [DOI] [PubMed] [Google Scholar]
  41. Rougon G., Dubois C., Buckley N., Magnani J. L., Zollinger W. A monoclonal antibody against meningococcus group B polysaccharides distinguishes embryonic from adult N-CAM. J Cell Biol. 1986 Dec;103(6 Pt 1):2429–2437. doi: 10.1083/jcb.103.6.2429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Schachner M., Kim S. K., Zehnle R. Developmental expression in central and peripheral nervous system of oligodendrocyte cell surface antigens (O antigens) recognized by monoclonal antibodies. Dev Biol. 1981 Apr 30;83(2):328–338. doi: 10.1016/0012-1606(81)90478-4. [DOI] [PubMed] [Google Scholar]
  43. Singh H., Pfeiffer S. E. Myelin-associated galactolipids in primary cultures from dissociated fetal rat brain: biosynthesis, accumulation, and cell surface expression. J Neurochem. 1985 Nov;45(5):1371–1381. doi: 10.1111/j.1471-4159.1985.tb07202.x. [DOI] [PubMed] [Google Scholar]
  44. Small R. K., Riddle P., Noble M. Evidence for migration of oligodendrocyte--type-2 astrocyte progenitor cells into the developing rat optic nerve. Nature. 1987 Jul 9;328(6126):155–157. doi: 10.1038/328155a0. [DOI] [PubMed] [Google Scholar]
  45. Sommer I., Schachner M. Monoclonal antibodies (O1 to O4) to oligodendrocyte cell surfaces: an immunocytological study in the central nervous system. Dev Biol. 1981 Apr 30;83(2):311–327. doi: 10.1016/0012-1606(81)90477-2. [DOI] [PubMed] [Google Scholar]
  46. Sprinkle T. J., Grimes M. J., Eller A. G. Isolation of 2',3'-cyclic nucleotide 3'-phosphodiesterase from human brain. J Neurochem. 1980 Apr;34(4):880–887. doi: 10.1111/j.1471-4159.1980.tb09661.x. [DOI] [PubMed] [Google Scholar]
  47. Tokuyasu K. T. A technique for ultracryotomy of cell suspensions and tissues. J Cell Biol. 1973 May;57(2):551–565. doi: 10.1083/jcb.57.2.551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Tokuyasu K. T. Immunochemistry on ultrathin frozen sections. Histochem J. 1980 Jul;12(4):381–403. doi: 10.1007/BF01011956. [DOI] [PubMed] [Google Scholar]
  49. Trapp B. D., Bernier L., Andrews S. B., Colman D. R. Cellular and subcellular distribution of 2',3'-cyclic nucleotide 3'-phosphodiesterase and its mRNA in the rat central nervous system. J Neurochem. 1988 Sep;51(3):859–868. doi: 10.1111/j.1471-4159.1988.tb01822.x. [DOI] [PubMed] [Google Scholar]
  50. Trotter J., Schachner M. Cells positive for the O4 surface antigen isolated by cell sorting are able to differentiate into astrocytes or oligodendrocytes. Brain Res Dev Brain Res. 1989 Mar 1;46(1):115–122. doi: 10.1016/0165-3806(89)90148-x. [DOI] [PubMed] [Google Scholar]
  51. Wolf M. K., Brandenberg M. C., Billings-Gagliardi S. Migration and myelination by adult glial cells: reconstructive analysis of tissue culture experiments. J Neurosci. 1986 Dec;6(12):3731–3738. doi: 10.1523/JNEUROSCI.06-12-03731.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Wolswijk G., Noble M. Identification of an adult-specific glial progenitor cell. Development. 1989 Feb;105(2):387–400. doi: 10.1242/dev.105.2.387. [DOI] [PubMed] [Google Scholar]
  53. Woyciechowska J. L., Trapp B. D., Patrick D. H., Shekarchi I. C., Leinikki P. O., Sever J. L., Holmes K. V. Acute and subacute demyelination induced by mouse hepatitis virus strain A59 in C3H mice. J Exp Pathol. 1984 Fall;1(4):295–306. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES