Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1989 Nov 1;109(5):2089–2096. doi: 10.1083/jcb.109.5.2089

The Lec4A CHO glycosylation mutant arises from miscompartmentalization of a Golgi glycosyltransferase

PMCID: PMC2115852  PMID: 2530238

Abstract

Two CHO glycosylation mutants that were previously shown to lack N- linked carbohydrates with GlcNAc beta 1,6Man alpha 1,6 branches, and to belong to the same genetic complementation group, are shown here to differ in the activity of N-acetylglucosaminyltransferase V (GlcNAc-TV) (UDP-GlcNA: alpha 1,6mannose beta-N-acetylglucosaminyltransferase V). One mutant, Lec4, has no detectable GlcNAc-TV activity whereas the other, now termed Lec4A, has activity equivalent to that of parental CHO in detergent cell extracts. However, Lec4A GlcNAc-TV can be distinguished from CHO GlcNAc-TV on the basis of its increased sensitivity to heat inactivation and its altered subcellular compartmentalization. Sucrose density gradient fractionation shows that the major portion of GlcNAc-TV from Lec4A cells cofractionates with membranes of the ER instead of Golgi membranes where GlcNAc-TV is localized in parental CHO cells. Other experiments show that Lec4A GlcNAc-TV is not concentrated in lysosomes, or in a post-Golgi compartment, or at the cell surface. The altered localization in Lec4A cells is specific for GlcNAc-TV because two other Lec4A Golgi transferases cofractionate at the density of Golgi membranes. The combined data suggest that both lec4 and lec4A mutations affect the structural gene for GlcNAc-TV, causing either the loss of GlcNAc-TV activity (lec4) or its miscompartmentalization (lec4A). The identification of the Lec4A defect indicates that appropriate screening of different glycosylation-defective mutants should enable the isolation of other mammalian cell trafficking mutants.

Full Text

The Full Text of this article is available as a PDF (943.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Balch W. E., Dunphy W. G., Braell W. A., Rothman J. E. Reconstitution of the transport of protein between successive compartments of the Golgi measured by the coupled incorporation of N-acetylglucosamine. Cell. 1984 Dec;39(2 Pt 1):405–416. doi: 10.1016/0092-8674(84)90019-9. [DOI] [PubMed] [Google Scholar]
  2. Balch W. E., Rothman J. E. Characterization of protein transport between successive compartments of the Golgi apparatus: asymmetric properties of donor and acceptor activities in a cell-free system. Arch Biochem Biophys. 1985 Jul;240(1):413–425. doi: 10.1016/0003-9861(85)90046-3. [DOI] [PubMed] [Google Scholar]
  3. Chaney W., Stanley P. Lec1A Chinese hamster ovary cell mutants appear to arise from a structural alteration in N-acetylglucosaminyltransferase I. J Biol Chem. 1986 Aug 15;261(23):10551–10557. [PubMed] [Google Scholar]
  4. Chen T. R. In situ detection of mycoplasma contamination in cell cultures by fluorescent Hoechst 33258 stain. Exp Cell Res. 1977 Feb;104(2):255–262. doi: 10.1016/0014-4827(77)90089-1. [DOI] [PubMed] [Google Scholar]
  5. Cummings R. D., Kornfeld S. Characterization of the structural determinants required for the high affinity interaction of asparagine-linked oligosaccharides with immobilized Phaseolus vulgaris leukoagglutinating and erythroagglutinating lectins. J Biol Chem. 1982 Oct 10;257(19):11230–11234. [PubMed] [Google Scholar]
  6. Cummings R. D., Trowbridge I. S., Kornfeld S. A mouse lymphoma cell line resistant to the leukoagglutinating lectin from Phaseolus vulgaris is deficient in UDP-GlcNAc: alpha-D-mannoside beta 1,6 N-acetylglucosaminyltransferase. J Biol Chem. 1982 Nov 25;257(22):13421–13427. [PubMed] [Google Scholar]
  7. Deutscher S. L., Hirschberg C. B. Mechanism of galactosylation in the Golgi apparatus. A Chinese hamster ovary cell mutant deficient in translocation of UDP-galactose across Golgi vesicle membranes. J Biol Chem. 1986 Jan 5;261(1):96–100. [PubMed] [Google Scholar]
  8. Dunphy W. G., Brands R., Rothman J. E. Attachment of terminal N-acetylglucosamine to asparagine-linked oligosaccharides occurs in central cisternae of the Golgi stack. Cell. 1985 Feb;40(2):463–472. doi: 10.1016/0092-8674(85)90161-8. [DOI] [PubMed] [Google Scholar]
  9. Goldberg D. E., Kornfeld S. Evidence for extensive subcellular organization of asparagine-linked oligosaccharide processing and lysosomal enzyme phosphorylation. J Biol Chem. 1983 Mar 10;258(5):3159–3165. [PubMed] [Google Scholar]
  10. Hammarström S., Hammarström M. L., Sundblad G., Arnarp J., Lönngren J. Mitogenic leukoagglutinin from Phaseolus vulgaris binds to a pentasaccharide unit in N-acetyllactosamine-type glycoprotein glycans. Proc Natl Acad Sci U S A. 1982 Mar;79(5):1611–1615. doi: 10.1073/pnas.79.5.1611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hindsgaul O., Tahir S. H., Srivastava O. P., Pierce M. The trisaccharide beta-D-GlcpNAc-(1----2)-alpha-D-Manp-(1----6)-beta-D-Manp, as its 8-methoxycarbonyloctyl glycoside, is an acceptor selective for N-acetylglucosaminyltransferase V. Carbohydr Res. 1988 Mar 1;173(2):263–272. doi: 10.1016/s0008-6215(00)90822-x. [DOI] [PubMed] [Google Scholar]
  12. Lippincott-Schwartz J., Bonifacino J. S., Yuan L. C., Klausner R. D. Degradation from the endoplasmic reticulum: disposing of newly synthesized proteins. Cell. 1988 Jul 15;54(2):209–220. doi: 10.1016/0092-8674(88)90553-3. [DOI] [PubMed] [Google Scholar]
  13. Markwell M. A., Haas S. M., Bieber L. L., Tolbert N. E. A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal Biochem. 1978 Jun 15;87(1):206–210. doi: 10.1016/0003-2697(78)90586-9. [DOI] [PubMed] [Google Scholar]
  14. Marsh M., Schmid S., Kern H., Harms E., Male P., Mellman I., Helenius A. Rapid analytical and preparative isolation of functional endosomes by free flow electrophoresis. J Cell Biol. 1987 Apr;104(4):875–886. doi: 10.1083/jcb.104.4.875. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Orlean P., Albright C., Robbins P. W. Cloning and sequencing of the yeast gene for dolichol phosphate mannose synthase, an essential protein. J Biol Chem. 1988 Nov 25;263(33):17499–17507. [PubMed] [Google Scholar]
  16. Pierce M., Arango J., Tahir S. H., Hindsgaul O. Activity of UDP-GlcNAc:alpha-mannoside beta(1,6)N-acetylglucosaminyltransferase (GnT V) in cultured cells using a synthetic trisaccharide acceptor. Biochem Biophys Res Commun. 1987 Jul 31;146(2):679–684. doi: 10.1016/0006-291x(87)90582-1. [DOI] [PubMed] [Google Scholar]
  17. Roth J., Berger E. G. Immunocytochemical localization of galactosyltransferase in HeLa cells: codistribution with thiamine pyrophosphatase in trans-Golgi cisternae. J Cell Biol. 1982 Apr;93(1):223–229. doi: 10.1083/jcb.93.1.223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Schekman R. Protein localization and membrane traffic in yeast. Annu Rev Cell Biol. 1985;1:115–143. doi: 10.1146/annurev.cb.01.110185.000555. [DOI] [PubMed] [Google Scholar]
  19. Stanley P., Caillibot V., Siminovitch L. Selection and characterization of eight phenotypically distinct lines of lectin-resistant Chinese hamster ovary cell. Cell. 1975 Oct;6(2):121–128. doi: 10.1016/0092-8674(75)90002-1. [DOI] [PubMed] [Google Scholar]
  20. Stanley P. Carbohydrate heterogeneity of vesicular stomatitis virus G glycoprotein allows localization of the defect in a glycosylation mutant of CHO cells. Arch Biochem Biophys. 1982 Nov;219(1):128–139. doi: 10.1016/0003-9861(82)90141-2. [DOI] [PubMed] [Google Scholar]
  21. Stanley P. Chinese hamster ovary cell mutants with multiple glycosylation defects for production of glycoproteins with minimal carbohydrate heterogeneity. Mol Cell Biol. 1989 Feb;9(2):377–383. doi: 10.1128/mcb.9.2.377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Stanley P. Glycosylation mutants of animal cells. Annu Rev Genet. 1984;18:525–552. doi: 10.1146/annurev.ge.18.120184.002521. [DOI] [PubMed] [Google Scholar]
  23. Stanley P. Selection of lectin-resistant mutants of animal cells. Methods Enzymol. 1983;96:157–184. doi: 10.1016/s0076-6879(83)96015-9. [DOI] [PubMed] [Google Scholar]
  24. Stanley P. Selection of specific wheat germ agglutinin-resistant (WgaR) phenotypes from Chinese hamster ovary cell populations containing numerous lecR genotypes. Mol Cell Biol. 1981 Aug;1(8):687–696. doi: 10.1128/mcb.1.8.687. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Stanley P., Siminovitch L. Complementation between mutants of CHO cells resistant to a variety of plant lectins. Somatic Cell Genet. 1977 Jul;3(4):391–405. doi: 10.1007/BF01542968. [DOI] [PubMed] [Google Scholar]
  26. Stanley P., Sudo T. Microheterogeneity among carbohydrate structures at the cell surface may be important in recognition phenomena. Cell. 1981 Mar;23(3):763–769. doi: 10.1016/0092-8674(81)90440-2. [DOI] [PubMed] [Google Scholar]
  27. Stanley P., Vivona G., Atkinson P. H. 1H NMR spectroscopy of carbohydrates from the G glycoprotein of vesicular stomatitis virus grown in parental and Lec4 Chinese hamster ovary cells. Arch Biochem Biophys. 1984 Apr;230(1):363–374. doi: 10.1016/0003-9861(84)90119-x. [DOI] [PubMed] [Google Scholar]
  28. Stoll J., Robbins A. R., Krag S. S. Mutant of Chinese hamster ovary cells with altered mannose 6-phosphate receptor activity is unable to synthesize mannosylphosphoryldolichol. Proc Natl Acad Sci U S A. 1982 Apr;79(7):2296–2300. doi: 10.1073/pnas.79.7.2296. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Trowbridge I. S., Hyman R., Ferson T., Mazauskas C. Expression of Thy-1 glycoprotein on lectin-resistant lymphoma cell lines. Eur J Immunol. 1978 Oct;8(10):716–723. doi: 10.1002/eji.1830081009. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES