Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1989 Nov 1;109(5):2481–2493. doi: 10.1083/jcb.109.5.2481

States of developmental commitment of a mouse embryonal carcinoma cell line differentiating along a neural pathway

PMCID: PMC2115869  PMID: 2553747

Abstract

The embryonal carcinoma cell line PCC7-S-AzaR1 (clone 1009) has been shown to differentiate in the presence of all-trans retinoic acid and dibutyryl cAMP into cells of predominantly neural properties (Paulin, D., H. Jakob, F. Jacob, K. Weber, and M. Osborn. 1982. Differentiation. 22:90-99). By analyzing the marker expression of derivatives in further detail, we characterized the two major cell phenotypes as neuron- and fibroblast-like and the two minor ones as astroglia- and endothelial- like. The stability of developmental commitment of clone 1009 was tested by recloning. The isolated subclones exhibited different patterns of chemically induced derivatives, with some of them (denoted N-clones) producing only a single (neuronal) cell type. As shown by long-term cultures in the absence of retinoic acid, the properties of isolated subclones remained essentially stable. In contrast to the clones producing neuron-like and other derivatives upon induced differentiation, the (exclusively neuronal) derivatives of N-clones detached and died within a few days in culture. If maintained in the presence of other neural cell types, however, their survival was dramatically extended indicating a requirement for specific interactions with other cells of the same tissue. The patterns of derivatives obtained from N-clones depended on the chemical nature of the substrate on which they were grown. Thus, when seeded on laminin- coated surfaces before induced differentiation, N-clones developed not only to neuron-like derivatives but rather to the same four derivatives observed with the original cell pool. These and further results suggest a common cell lineage of the identified phenotypes. The isolated subclones of uninduced cells probably represent different states of commitment within the same developmental pathway. Their stability offers the opportunity to analyze the nature of cellular commitment on the cellular, molecular, and genetic levels. This makes the family of clones derived from PCC7-S-AzaR1 (clone 1009) cells an advantageous in vitro model of mammalian brain early ontogenesis.

Full Text

The Full Text of this article is available as a PDF (3.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abney E. R., Bartlett P. P., Raff M. C. Astrocytes, ependymal cells, and oligodendrocytes develop on schedule in dissociated cell cultures of embryonic rat brain. Dev Biol. 1981 Apr 30;83(2):301–310. doi: 10.1016/0012-1606(81)90476-0. [DOI] [PubMed] [Google Scholar]
  2. Baroffio A., Dupin E., Le Douarin N. M. Clone-forming ability and differentiation potential of migratory neural crest cells. Proc Natl Acad Sci U S A. 1988 Jul;85(14):5325–5329. doi: 10.1073/pnas.85.14.5325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Berg G. J., Schachner M. Electron-microscopic localization of A2B5 cell surface antigen in monolayer cultures of murine cerebellum and retina. Cell Tissue Res. 1982;224(3):637–645. doi: 10.1007/BF00213758. [DOI] [PubMed] [Google Scholar]
  4. Bignami A., Eng L. F., Dahl D., Uyeda C. T. Localization of the glial fibrillary acidic protein in astrocytes by immunofluorescence. Brain Res. 1972 Aug 25;43(2):429–435. doi: 10.1016/0006-8993(72)90398-8. [DOI] [PubMed] [Google Scholar]
  5. Boulter C. A., Wagner E. F. The effects of v-src expression on the differentiation of embryonal carcinoma cells. Oncogene. 1988 Mar;2(3):207–214. [PubMed] [Google Scholar]
  6. Breitkreutz D., Hornung J., Pöhlmann J., Brown-Bierman L., Bohnert A., Bowden P. E., Fusenig N. E. Environmental induction of differentiation-specific keratins in malignant mouse keratinocyte lines. Eur J Cell Biol. 1986 Dec;42(2):255–267. [PubMed] [Google Scholar]
  7. Buckalew J. J., Sterman B., Rosenstraus M. Variant embryonal carcinoma cells lacking SSEA-1 and Forsmann antigens remain developmentally pluripotent. Dev Biol. 1985 Jan;107(1):134–141. doi: 10.1016/0012-1606(85)90382-3. [DOI] [PubMed] [Google Scholar]
  8. Darmon M. Y. Laminin provides a better substrate than fibronectin for attachment, growth, and differentiation of 1003 embryonal carcinoma cells. In Vitro. 1982 Dec;18(12):997–1003. doi: 10.1007/BF02796374. [DOI] [PubMed] [Google Scholar]
  9. Debus E., Weber K., Osborn M. Monoclonal antibodies specific for glial fibrillary acidic (GFA) protein and for each of the neurofilament triplet polypeptides. Differentiation. 1983;25(2):193–203. doi: 10.1111/j.1432-0436.1984.tb01355.x. [DOI] [PubMed] [Google Scholar]
  10. Doe C. Q., Goodman C. S. Early events in insect neurogenesis. II. The role of cell interactions and cell lineage in the determination of neuronal precursor cells. Dev Biol. 1985 Sep;111(1):206–219. doi: 10.1016/0012-1606(85)90446-4. [DOI] [PubMed] [Google Scholar]
  11. Eisenbarth G. S., Walsh F. S., Nirenberg M. Monoclonal antibody to a plasma membrane antigen of neurons. Proc Natl Acad Sci U S A. 1979 Oct;76(10):4913–4917. doi: 10.1073/pnas.76.10.4913. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fellous M., Günther E., Kemler R., Wiels J., Berger R., Guenet J. L., Jakob H., Jacob F. Association of the H-Y male antigen with beta2-microglobulin on human lymphoid and differentiated mouse teratocarcinoma cell lines. J Exp Med. 1978 Jul 1;148(1):58–70. doi: 10.1084/jem.148.1.58. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Forest N., Boy-Lefevre M. L., Duprey P., Grimaud J. A., Jakob H., Paulin D. Collagen synthesis in mouse embryonal carcinoma cells: effect of retinoic acid. Differentiation. 1982;23(2):153–163. doi: 10.1111/j.1432-0436.1982.tb01278.x. [DOI] [PubMed] [Google Scholar]
  14. Gennarini G., Hirn M., Deagostini-Bazin H., Goridis C. Studies on the transmembrane disposition of the neural cell adhesion molecule N-CAM. The use of liposome-inserted radioiodinated N-CAM to study its transbilayer orientation. Eur J Biochem. 1984 Jul 2;142(1):65–73. doi: 10.1111/j.1432-1033.1984.tb08251.x. [DOI] [PubMed] [Google Scholar]
  15. Ghandour S., Langley K., Gombos G., Hirn M., Hirsch M. R., Goridis C. A surface marker for murine vascular endothelial cells defined by monoclonal antibody. J Histochem Cytochem. 1982 Feb;30(2):165–170. doi: 10.1177/30.2.7061819. [DOI] [PubMed] [Google Scholar]
  16. Giese G., Traub P. Induction of vimentin synthesis in mouse myeloma cells MPC-11 by 12-0-tetradecanoylphorbol-13-acetate. Eur J Cell Biol. 1986 Apr;40(2):266–274. [PubMed] [Google Scholar]
  17. Gregorová S., Loudová M., Dohnal K., Nosek J., Forejt J. Establishment of a pluripotent embryonal carcinoma cell line not expressing SSEA-1 and ECMA-7 phenotypes. Cell Differ. 1984 Dec;15(2-4):87–92. doi: 10.1016/0045-6039(84)90057-5. [DOI] [PubMed] [Google Scholar]
  18. Grover A., Adamson E. D. Conditions affecting the differentiation of F9 teratocarcinoma cells: potentiation of response by cyclic AMP. In Vitro Cell Dev Biol. 1986 May;22(5):280–284. doi: 10.1007/BF02621231. [DOI] [PubMed] [Google Scholar]
  19. Heaton M. B., Swanson D. J. The influence of laminin on the initial differentiation of cultured neural tube neurons. J Neurosci Res. 1988 Feb;19(2):212–218. doi: 10.1002/jnr.490190206. [DOI] [PubMed] [Google Scholar]
  20. Hogan B. L., Taylor A., Adamson E. Cell interactions modulate embryonal carcinoma cell differentiation into parietal or visceral endoderm. Nature. 1981 May 21;291(5812):235–237. doi: 10.1038/291235a0. [DOI] [PubMed] [Google Scholar]
  21. Howe W. E., Klier F. G., Oshima R. G. Murine endodermal cytokeratins Endo A and Endo B are localized in the same intermediate filament. J Histochem Cytochem. 1986 Jun;34(6):785–793. doi: 10.1177/34.6.2422254. [DOI] [PubMed] [Google Scholar]
  22. Jacob F. The Leeuwenhoek Lecture, 1977. Mouse teratocarcinoma and mouse embryo. Proc R Soc Lond B Biol Sci. 1978 May 16;201(1144):249–270. doi: 10.1098/rspb.1978.0044. [DOI] [PubMed] [Google Scholar]
  23. Johnson G. D., Nogueira Araujo G. M. A simple method of reducing the fading of immunofluorescence during microscopy. J Immunol Methods. 1981;43(3):349–350. doi: 10.1016/0022-1759(81)90183-6. [DOI] [PubMed] [Google Scholar]
  24. Jones-Villeneuve E. M., McBurney M. W., Rogers K. A., Kalnins V. I. Retinoic acid induces embryonal carcinoma cells to differentiate into neurons and glial cells. J Cell Biol. 1982 Aug;94(2):253–262. doi: 10.1083/jcb.94.2.253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Keane R. W., Mehta P. P., Rose B., Honig L. S., Loewenstein W. R., Rutishauser U. Neural differentiation, NCAM-mediated adhesion, and gap junctional communication in neuroectoderm. A study in vitro. J Cell Biol. 1988 Apr;106(4):1307–1319. doi: 10.1083/jcb.106.4.1307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Kemler R., Brûlet P., Schnebelen M. T., Gaillard J., Jacob F. Reactivity of monoclonal antibodies against intermediate filament proteins during embryonic development. J Embryol Exp Morphol. 1981 Aug;64:45–60. [PubMed] [Google Scholar]
  27. Kindler-Röhrborn A., Ahrens O., Liepelt U., Rajewsky M. F. Expression of monoclonal antibody-defined cell surface antigens during rat brain development. Differentiation. 1985;30(1):53–60. doi: 10.1111/j.1432-0436.1985.tb00513.x. [DOI] [PubMed] [Google Scholar]
  28. Kleinman H. K., Cannon F. B., Laurie G. W., Hassell J. R., Aumailley M., Terranova V. P., Martin G. R., DuBois-Dalcq M. Biological activities of laminin. J Cell Biochem. 1985;27(4):317–325. doi: 10.1002/jcb.240270402. [DOI] [PubMed] [Google Scholar]
  29. Koopman P., Cotton R. G. Pluripotent differentiation of single F9 embryonal carcinoma cells. Exp Cell Res. 1987 Feb;168(2):567–571. doi: 10.1016/0014-4827(87)90030-9. [DOI] [PubMed] [Google Scholar]
  30. Kruse J., Mailhammer R., Wernecke H., Faissner A., Sommer I., Goridis C., Schachner M. Neural cell adhesion molecules and myelin-associated glycoprotein share a common carbohydrate moiety recognized by monoclonal antibodies L2 and HNK-1. Nature. 1984 Sep 13;311(5982):153–155. doi: 10.1038/311153a0. [DOI] [PubMed] [Google Scholar]
  31. Lazarides E., Hubbard B. D. Immunological characterization of the subunit of the 100 A filaments from muscle cells. Proc Natl Acad Sci U S A. 1976 Dec;73(12):4344–4348. doi: 10.1073/pnas.73.12.4344. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Levine J. M., Flynn P. Cell surface changes accompanying the neural differentiation of an embryonal carcinoma cell line. J Neurosci. 1986 Nov;6(11):3374–3384. doi: 10.1523/JNEUROSCI.06-11-03374.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Martin G. R., Evans M. J. The morphology and growth of a pluripotent teratocarcinoma cell line and its derivatives in tissue culture. Cell. 1974 Jul;2(3):163–172. doi: 10.1016/0092-8674(74)90090-7. [DOI] [PubMed] [Google Scholar]
  34. Martin G. R. Teratocarcinomas and mammalian embryogenesis. Science. 1980 Aug 15;209(4458):768–776. doi: 10.1126/science.6250214. [DOI] [PubMed] [Google Scholar]
  35. McBurney M. W. Clonal lines of teratocarcinoma cells in vitro: differentiation and cytogenetic characteristics. J Cell Physiol. 1976 Nov;89(3):441–455. doi: 10.1002/jcp.1040890310. [DOI] [PubMed] [Google Scholar]
  36. McBurney M. W., Jones-Villeneuve E. M., Edwards M. K., Anderson P. J. Control of muscle and neuronal differentiation in a cultured embryonal carcinoma cell line. Nature. 1982 Sep 9;299(5879):165–167. doi: 10.1038/299165a0. [DOI] [PubMed] [Google Scholar]
  37. Mummery C. L., Feijen A., Moolenaar W. H., van den Brink C. E., de Laat S. W. Establishment of a differentiated mesodermal line from P19 EC cells expressing functional PDGF and EGF receptors. Exp Cell Res. 1986 Jul;165(1):229–242. doi: 10.1016/0014-4827(86)90547-1. [DOI] [PubMed] [Google Scholar]
  38. Mummery C. L., Feijen A., van der Saag P. T., van den Brink C. E., de Laat S. W. Clonal variants of differentiated P19 embryonal carcinoma cells exhibit epidermal growth factor receptor kinase activity. Dev Biol. 1985 Jun;109(2):402–410. doi: 10.1016/0012-1606(85)90466-x. [DOI] [PubMed] [Google Scholar]
  39. Mummery C. L., van den Brink C. E., van der Saag P. T., de Laat S. W. The cell cycle, cell death, and cell morphology during retinoic acid-induced differentiation of embryonal carcinoma cells. Dev Biol. 1984 Aug;104(2):297–307. doi: 10.1016/0012-1606(84)90085-x. [DOI] [PubMed] [Google Scholar]
  40. Noble M., Fok-Seang J., Cohen J. Glia are a unique substrate for the in vitro growth of central nervous system neurons. J Neurosci. 1984 Jul;4(7):1892–1903. doi: 10.1523/JNEUROSCI.04-07-01892.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Osborn M., Debus E., Weber K. Monoclonal antibodies specific for vimentin. Eur J Cell Biol. 1984 May;34(1):137–143. [PubMed] [Google Scholar]
  42. Paulin D., Jakob H., Jacob F., Weber K., Osborn M. In vitro differentiation of mouse teratocarcinoma cells monitored by intermediate filament expression. Differentiation. 1982;22(2):90–99. doi: 10.1111/j.1432-0436.1982.tb01231.x. [DOI] [PubMed] [Google Scholar]
  43. Pfeiffer S. E., Jakob H., Mikoshiba K., Dubois P., Guenet J. L., Nicolas J. F., Gaillard J., Chevance G., Jacob F. Differentiation of a teratocarcinoma line: preferential development of cholinergic neurons. J Cell Biol. 1981 Jan;88(1):57–66. doi: 10.1083/jcb.88.1.57. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Raff M. C., Fields K. L., Hakomori S. I., Mirsky R., Pruss R. M., Winter J. Cell-type-specific markers for distinguishing and studying neurons and the major classes of glial cells in culture. Brain Res. 1979 Oct 5;174(2):283–308. doi: 10.1016/0006-8993(79)90851-5. [DOI] [PubMed] [Google Scholar]
  45. Rathjen F. G., Schachner M. Immunocytological and biochemical characterization of a new neuronal cell surface component (L1 antigen) which is involved in cell adhesion. EMBO J. 1984 Jan;3(1):1–10. doi: 10.1002/j.1460-2075.1984.tb01753.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Schnitzer J., Schachner M. Expression of Thy-1, H-2, and NS-4 cell surface antigens and tetanus toxin receptors in early postnatal and adult mouse cerebellum. J Neuroimmunol. 1981 Dec;1(4):429–456. doi: 10.1016/0165-5728(81)90022-9. [DOI] [PubMed] [Google Scholar]
  47. Smith S. C., Reuhl K. R., Craig J., McBurney M. W. The role of aggregation in embryonal carcinoma cell differentiation. J Cell Physiol. 1987 Apr;131(1):74–84. doi: 10.1002/jcp.1041310112. [DOI] [PubMed] [Google Scholar]
  48. Solter D., Knowles B. B. Monoclonal antibody defining a stage-specific mouse embryonic antigen (SSEA-1). Proc Natl Acad Sci U S A. 1978 Nov;75(11):5565–5569. doi: 10.1073/pnas.75.11.5565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Sommer I., Schachner M. Monoclonal antibodies (O1 to O4) to oligodendrocyte cell surfaces: an immunocytological study in the central nervous system. Dev Biol. 1981 Apr 30;83(2):311–327. doi: 10.1016/0012-1606(81)90477-2. [DOI] [PubMed] [Google Scholar]
  50. Strickland S., Mahdavi V. The induction of differentiation in teratocarcinoma stem cells by retinoic acid. Cell. 1978 Oct;15(2):393–403. doi: 10.1016/0092-8674(78)90008-9. [DOI] [PubMed] [Google Scholar]
  51. Temple S., Raff M. C. Differentiation of a bipotential glial progenitor cell in a single cell microculture. Nature. 1985 Jan 17;313(5999):223–225. doi: 10.1038/313223a0. [DOI] [PubMed] [Google Scholar]
  52. Turner D. L., Cepko C. L. A common progenitor for neurons and glia persists in rat retina late in development. Nature. 1987 Jul 9;328(6126):131–136. doi: 10.1038/328131a0. [DOI] [PubMed] [Google Scholar]
  53. Wang S. Y., Gudas L. J. Selection and characterization of F9 teratocarcinoma stem cell mutants with altered responses to retinoic acid. J Biol Chem. 1984 May 10;259(9):5899–5906. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES