Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1988 Nov;170(11):5185–5191. doi: 10.1128/jb.170.11.5185-5191.1988

Proline carrier mutant of Escherichia coli K-12 with altered cation sensitivity of substrate-binding activity: cloning, biochemical characterization, and identification of the mutation.

M Ohsawa 1, T Mogi 1, H Yamamoto 1, I Yamato 1, Y Anraku 1
PMCID: PMC211588  PMID: 3053649

Abstract

Two putP mutants of Escherichia coli K-12 that were defective in proline transport but retained the binding activities of the major proline carrier were isolated (T. Mogi, H. Yamamoto, T. Nakao, I. Yamato, and Y. Anraku, Mol. Gen. Genet. 202:35-41, 1986). One of these mutations and three null-type mutations (K. Motojima, I. Yamato, and Y. Anraku, J. Bacteriol. 136:5-9, 1978) were cloned into a pBR322 putP+ hybrid plasmid (pTMP5) by in vivo recombination. Cytoplasmic membrane vesicles were prepared from the mutant strains and strains harboring pTMP5 putP plasmids, and the properties of the proline-binding reaction of the mutant putP carriers in membranes were examined under nonenergized conditions. The putP19, putP21, and putP22 mutations, which were mapped in the same DNA segment of the putP gene (Mogi et al., Mol. Gen. Genet. 202:35-41, 1986), caused the complete loss of proline carrier activity. The proline carriers encoded by the mutant putP genes, putP9 and putP32, and putP32 in pTMP5-32, which was derived from in vivo recombination with the putP32 mutation, had altered sodium ion and proton dependence of binding affinities for proline and were resistant to N-ethylmaleimide inactivation without changes in the specificities for substrates and alkaline metal cations. The nucleotide sequence of the putP32 lesion located on the 0.35-megadalton RsaI-PvuII fragment in the putP gene in pTMP5-32 was determined; the mutation changed a cytosine at position 1001 to a thymine, causing the alteration of arginine to cysteine at amino acid position 257 in the primary structure of the proline carrier. It was shown that this one point mutation was enough to produce the phenotype of pTMP5-32 by in vitro DNA replacement of the AcyI-PvuII fragment of the wild-type putP gene with the DNA fragment containing the mutated nucleotide sequence.

Full text

PDF
5185

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amanuma H., Itoh J., Anraku Y. Proton-dependent binding of proline to carrier in Escherichia coli membrane. FEBS Lett. 1977 Jun 15;78(2):173–176. doi: 10.1016/0014-5793(77)80299-8. [DOI] [PubMed] [Google Scholar]
  2. Birnboim H. C., Doly J. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 1979 Nov 24;7(6):1513–1523. doi: 10.1093/nar/7.6.1513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Casadaban M. J., Chou J., Cohen S. N. In vitro gene fusions that join an enzymatically active beta-galactosidase segment to amino-terminal fragments of exogenous proteins: Escherichia coli plasmid vectors for the detection and cloning of translational initiation signals. J Bacteriol. 1980 Aug;143(2):971–980. doi: 10.1128/jb.143.2.971-980.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chen C. C., Tsuchiya T., Yamane Y., Wood J. M., Wilson T. H. Na+ (Li+)-proline cotransport in Escherichia coli. J Membr Biol. 1985;84(2):157–164. doi: 10.1007/BF01872213. [DOI] [PubMed] [Google Scholar]
  5. Chen C. C., Wilson T. H. Solubilization and functional reconstitution of the proline transport system of Escherichia coli. J Biol Chem. 1986 Feb 25;261(6):2599–2604. [PubMed] [Google Scholar]
  6. DAVIS B. D., MINGIOLI E. S. Mutants of Escherichia coli requiring methionine or vitamin B12. J Bacteriol. 1950 Jul;60(1):17–28. doi: 10.1128/jb.60.1.17-28.1950. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hanada K., Yamato I., Anraku Y. Identification of proline carrier in Escherichia coli K-12. FEBS Lett. 1985 Oct 28;191(2):278–282. doi: 10.1016/0014-5793(85)80024-7. [DOI] [PubMed] [Google Scholar]
  8. Hanada K., Yamato I., Anraku Y. Purification and reconstitution of Escherichia coli proline carrier using a site specifically cleavable fusion protein. J Biol Chem. 1988 May 25;263(15):7181–7185. [PubMed] [Google Scholar]
  9. Kaback H. R. Use of site-directed mutagenesis to study the mechanism of a membrane transport protein. Biochemistry. 1987 Apr 21;26(8):2071–2076. doi: 10.1021/bi00382a001. [DOI] [PubMed] [Google Scholar]
  10. Kayama-Gonda Y., Kawasaki T. Role of lithium ions in proline transport in Escherichia coli. J Bacteriol. 1979 Aug;139(2):560–564. doi: 10.1128/jb.139.2.560-564.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. LENNOX E. S. Transduction of linked genetic characters of the host by bacteriophage P1. Virology. 1955 Jul;1(2):190–206. doi: 10.1016/0042-6822(55)90016-7. [DOI] [PubMed] [Google Scholar]
  12. Menick D. R., Carrasco N., Antes L., Patel L., Kaback H. R. lac permease of Escherichia coli: arginine-302 as a component of the postulated proton relay. Biochemistry. 1987 Oct 20;26(21):6638–6644. doi: 10.1021/bi00395a012. [DOI] [PubMed] [Google Scholar]
  13. Mogi T., Anraku Y. Mechanism of proline transport in Escherichia coli K12. I. Effect of a membrane potential on the kinetics of 2H+/proline symport in cytoplasmic membrane vesicles. J Biol Chem. 1984 Jun 25;259(12):7791–7796. [PubMed] [Google Scholar]
  14. Mogi T., Anraku Y. Mechanism of proline transport in Escherichia coli K12. II. Effect of alkaline cations on binding of proline to a H+/proline symport carrier in cytoplasmic membrane vesicles. J Biol Chem. 1984 Jun 25;259(12):7797–7801. [PubMed] [Google Scholar]
  15. Mogi T., Anraku Y. Mechanism of proline transport in Escherichia coli K12. III. Inhibition of membrane potential-driven proline transport by syn-coupled ions and evidence for symmetrical transition states of the 2H+/proline symport carrier. J Biol Chem. 1984 Jun 25;259(12):7802–7806. [PubMed] [Google Scholar]
  16. Mogi T., Yamamoto H., Nakao T., Yamato I., Anraku Y. Genetic and physical characterization of putP, the proline carrier gene of Escherichia coli K12. Mol Gen Genet. 1986 Jan;202(1):35–41. doi: 10.1007/BF00330513. [DOI] [PubMed] [Google Scholar]
  17. Motojima K., Yamato I., Anraku Y., Nishimura A., Hirota Y. Amplification and characterization of the proline transport carrier of Escherichia coli K-12 by using proT+ hybrid plasmids. Proc Natl Acad Sci U S A. 1979 Dec;76(12):6255–6259. doi: 10.1073/pnas.76.12.6255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Motojima K., Yamato I., Anraku Y. Proline transport carrier-defective mutants of Escherichia coli K-12: properties and mapping. J Bacteriol. 1978 Oct;136(1):5–9. doi: 10.1128/jb.136.1.5-9.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Nakao T., Yamato I., Anraku Y. Nucleotide sequence of putC, the regulatory region for the put regulon of Escherichia coli K12. Mol Gen Genet. 1987 Dec;210(2):364–368. doi: 10.1007/BF00325707. [DOI] [PubMed] [Google Scholar]
  20. Nakao T., Yamato I., Anraku Y. Nucleotide sequence of putP, the proline carrier gene of Escherichia coli K12. Mol Gen Genet. 1987 Jun;208(1-2):70–75. doi: 10.1007/BF00330424. [DOI] [PubMed] [Google Scholar]
  21. Tsuchiya T., Yamane Y., Shiota S., Kawasaki T. Cotransport of proline and Li+ in Escherichia coli. FEBS Lett. 1984 Mar 26;168(2):327–330. doi: 10.1016/0014-5793(84)80272-0. [DOI] [PubMed] [Google Scholar]
  22. Yazyu H., Shiota S., Futai M., Tsuchiya T. Alteration in cation specificity of the melibiose transport carrier of Escherichia coli due to replacement of proline 122 with serine. J Bacteriol. 1985 Jun;162(3):933–937. doi: 10.1128/jb.162.3.933-937.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES