Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1989 Dec 1;109(6):3403–3410. doi: 10.1083/jcb.109.6.3403

Hepatocyte differentiation in vitro: initiation of tyrosine aminotransferase expression in cultured fetal rat hepatocytes

PMCID: PMC2115913  PMID: 2574725

Abstract

A fetal rat hepatocyte culture system has been used to study the molecular mechanisms of tyrosine aminotransferase (TAT) gene expression during development. It has previously been shown that TAT activity can be detected in 19-d, but not 15-d, gestation hepatocytes on the first day of culture (Yeoh, G. C. T., F. A. Bennett, and I. T. Oliver. 1979. Biochem. J. 180:153-160). In this study enzyme activity, synthesis, and mRNA levels were determined in hepatocytes isolated from 13-, 15-, and 19-d gestation rats maintained in culture for 1, 2, or 3 d and exposed to dexamethasone. TAT expression is barely detectable in 13-d gestation hepatocytes even after 3 d in culture. Hepatocytes isolated from 15-d gestation fetuses have undetectable levels of enzyme activity and synthesis on the first day of culture; both can be assayed by days 2 and 3. TAT mRNA levels in these hepatocytes, measured by hybridization with a specific cDNA, increase substantially during culture. TAT activity, synthesis, and mRNA are evident on the first and subsequent days of culture in 19-d gestation hepatocytes. Transcription measurements in isolated nuclei indicate that the increase in TAT mRNA in 15- and 19-d gestation hepatocytes is associated with an increase in transcription of the gene. Immunocytochemical studies demonstrated that the increase in TAT expression correlated with an increase in the proportion of hepatocytes expressing the enzyme, rather than a simultaneous increase in all hepatocytes. These results support the proposal that a subpopulation of 15-d fetal hepatocytes undergo differentiation in culture with respect to TAT.

Full Text

The Full Text of this article is available as a PDF (2.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Becker P., Renkawitz R., Schütz G. Tissue-specific DNaseI hypersensitive sites in the 5'-flanking sequences of the tryptophan oxygenase and the tyrosine aminotransferase genes. EMBO J. 1984 Sep;3(9):2015–2020. doi: 10.1002/j.1460-2075.1984.tb02084.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bonner W. M., Laskey R. A. A film detection method for tritium-labelled proteins and nucleic acids in polyacrylamide gels. Eur J Biochem. 1974 Jul 1;46(1):83–88. doi: 10.1111/j.1432-1033.1974.tb03599.x. [DOI] [PubMed] [Google Scholar]
  3. Cake M. H. Induction of tyrosine aminotransferase in utero by anti-insulin agents. Biochem J. 1986 Sep 15;238(3):927–929. doi: 10.1042/bj2380927. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chou J. Y., Yeoh G. C. Tyrosine aminotransferase gene expression in a temperature-sensitive adult rat liver cell line. Cancer Res. 1987 Oct 15;47(20):5415–5420. [PubMed] [Google Scholar]
  5. Danesch U., Hashimoto S., Renkawitz R., Schütz G. Transcriptional regulation of the tryptophan oxygenase gene in rat liver by glucocorticoids. J Biol Chem. 1983 Apr 25;258(8):4750–4753. [PubMed] [Google Scholar]
  6. Derman E., Krauter K., Walling L., Weinberger C., Ray M., Darnell J. E., Jr Transcriptional control in the production of liver-specific mRNAs. Cell. 1981 Mar;23(3):731–739. doi: 10.1016/0092-8674(81)90436-0. [DOI] [PubMed] [Google Scholar]
  7. Donner M. E., Leonard C. M., Gluecksohn-Waelsch S. Developmental regulation of constitutive and inducible expression of hepatocyte-specific genes in the mouse. Proc Natl Acad Sci U S A. 1988 May;85(9):3049–3051. doi: 10.1073/pnas.85.9.3049. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fletcher S., Thomas T., Schreiber G., Heinrich P. C., Yeoh G. C. The development of rat alpha 2-macroglobulin. Studies in vivo and in cultured fetal rat hepatocytes. Eur J Biochem. 1988 Feb 1;171(3):703–709. doi: 10.1111/j.1432-1033.1988.tb13842.x. [DOI] [PubMed] [Google Scholar]
  9. Fort P., Marty L., Piechaczyk M., el Sabrouty S., Dani C., Jeanteur P., Blanchard J. M. Various rat adult tissues express only one major mRNA species from the glyceraldehyde-3-phosphate-dehydrogenase multigenic family. Nucleic Acids Res. 1985 Mar 11;13(5):1431–1442. doi: 10.1093/nar/13.5.1431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Grange T., Guénet C., Dietrich J. B., Chasserot S., Fromont M., Befort N., Jami J., Beck G., Pictet R. Complete complementary DNA of rat tyrosine aminotransferase messenger RNA. Deduction of the primary structure of the enzyme. J Mol Biol. 1985 Jul 20;184(2):347–350. doi: 10.1016/0022-2836(85)90386-9. [DOI] [PubMed] [Google Scholar]
  11. Greengard O., Dewey H. K. Initiation by glucagon of the premature development of tyrosine aminotransferase, serine dehydratase, and glucose-6-phosphatase in fetal rat liver. J Biol Chem. 1967 Jun 25;242(12):2986–2991. [PubMed] [Google Scholar]
  12. HANKS J. H., WALLACE R. E. Relation of oxygen and temperature in the preservation of tissues by refrigeration. Proc Soc Exp Biol Med. 1949 Jun;71(2):196–200. doi: 10.3181/00379727-71-17131. [DOI] [PubMed] [Google Scholar]
  13. Hashimoto S., Schmid W., Schütz G. Transcriptional activation of the rat liver tyrosine aminotransferase gene by cAMP. Proc Natl Acad Sci U S A. 1984 Nov;81(21):6637–6641. doi: 10.1073/pnas.81.21.6637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hinegardner R. T. An improved fluorometric assay for DNA. Anal Biochem. 1971 Jan;39(1):197–201. doi: 10.1016/0003-2697(71)90476-3. [DOI] [PubMed] [Google Scholar]
  15. Ho K. K., Cake M. H., Yeoh G. C., Oliver I. T. Insulin antagonism of glucocorticoid induction of tyrosine aminotransferase in cultured foetal hepatocytes. Eur J Biochem. 1981 Aug;118(1):137–142. doi: 10.1111/j.1432-1033.1981.tb05496.x. [DOI] [PubMed] [Google Scholar]
  16. Holt P. G., Oliver I. T. Factors affecting the premature induction of tyrosine aminotransferase in foetal rat liver. Biochem J. 1968 Jun;108(2):333–338. doi: 10.1042/bj1080333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kraemer M., Vassy J., Brighton V., Fuller S., Yeoh G. The effect of dexamethasone on transferrin secretion by cultured fetal rat hepatocytes. Eur J Cell Biol. 1986 Oct;42(1):52–59. [PubMed] [Google Scholar]
  18. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  19. Lehrach H., Diamond D., Wozney J. M., Boedtker H. RNA molecular weight determinations by gel electrophoresis under denaturing conditions, a critical reexamination. Biochemistry. 1977 Oct 18;16(21):4743–4751. doi: 10.1021/bi00640a033. [DOI] [PubMed] [Google Scholar]
  20. Perry S. T., Rothrock R., Isham K. R., Lee K. L., Kenney F. T. Development of tyrosine aminotransferase in perinatal rat liver: changes in functional messenger RNA and the role of inducing hormones. J Cell Biochem. 1983;21(1):47–61. doi: 10.1002/jcb.240210107. [DOI] [PubMed] [Google Scholar]
  21. Rothrock R., Lee K. L., Isham K. R., Johnson A. C., Kenney F. T. Different mechanisms control developmental activation of transcription of genes subject to identical hormonal regulation in adult liver. Biochem Biophys Res Commun. 1987 May 14;144(3):1182–1187. doi: 10.1016/0006-291x(87)91436-7. [DOI] [PubMed] [Google Scholar]
  22. Ruiz-Bravo N., Ernest M. J. Induction of tyrosine aminotransferase mRNA by glucocorticoids and cAMP in fetal rat liver. Proc Natl Acad Sci U S A. 1982 Jan;79(2):365–368. doi: 10.1073/pnas.79.2.365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Ruiz-Bravo N., Ernest M. J. Multihormonal control of tyrosine aminotransferase activity in developing rat liver. Endocrinology. 1985 Jun;116(6):2489–2496. doi: 10.1210/endo-116-6-2489. [DOI] [PubMed] [Google Scholar]
  24. SERENI F., KENNEY F. T., KRETCHMER N. Factors influencing the development of tyrosine-alpha-ketoglutarate transaminase activity in rat liver. J Biol Chem. 1959 Mar;234(3):609–612. [PubMed] [Google Scholar]
  25. Sargent T. D., Jagodzinski L. L., Yang M., Bonner J. Fine structure and evolution of the rat serum albumin gene. Mol Cell Biol. 1981 Oct;1(10):871–883. doi: 10.1128/mcb.1.10.871. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Scherer G., Schmid W., Strange C. M., Röwekamp W., Schütz G. Isolation of cDNA clones coding for rat tyrosine aminotransferase. Proc Natl Acad Sci U S A. 1982 Dec;79(23):7205–7208. doi: 10.1073/pnas.79.23.7205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Schmid E., Schmid W., Jantzen M., Mayer D., Jastorff B., Schütz G. Transcription activation of the tyrosine aminotransferase gene by glucocorticoids and cAMP in primary hepatocytes. Eur J Biochem. 1987 Jun 15;165(3):499–506. doi: 10.1111/j.1432-1033.1987.tb11467.x. [DOI] [PubMed] [Google Scholar]
  28. Schmid W., Müller G., Schütz G., Gluecksohn-Waelsch S. Deletions near the albino locus on chromosome 7 of the mouse affect the level of tyrosine aminotransferase mRNA. Proc Natl Acad Sci U S A. 1985 May;82(9):2866–2869. doi: 10.1073/pnas.82.9.2866. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Shinomiya T., Scherer G., Schmid W., Zentgraf H., Schütz G. Isolation and characterization of the rat tyrosine aminotransferase gene. Proc Natl Acad Sci U S A. 1984 Mar;81(5):1346–1350. doi: 10.1073/pnas.81.5.1346. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Wicks W. D. Induction of tyrosine-alpha-ketoglutarate transaminase in fetal rat liver. J Biol Chem. 1968 Mar 10;243(5):900–906. [PubMed] [Google Scholar]
  31. Yeoh G. C., Bennett F. A., Oliver I. T. Hepatocyte differentiation in culture. Appearance of tyrosine aminotransferase. Biochem J. 1979 Apr 15;180(1):153–160. doi: 10.1042/bj1800153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Yeoh G. C., Brighton V. J., Angus D. A., Kraemer M., Vassy J., Chalemeau M. T. The effect of dexamethasone on albumin production by fetal rat hepatocytes in culture. Eur J Cell Biol. 1985 Jul;38(1):157–164. [PubMed] [Google Scholar]
  33. Yoo-Warren H., Monahan J. E., Short J., Short H., Bruzel A., Wynshaw-Boris A., Meisner H. M., Samols D., Hanson R. W. Isolation and characterization of the gene coding for cytosolic phosphoenolpyruvate carboxykinase (GTP) from the rat. Proc Natl Acad Sci U S A. 1983 Jun;80(12):3656–3660. doi: 10.1073/pnas.80.12.3656. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES