Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1989 Dec 1;109(6):2879–2886. doi: 10.1083/jcb.109.6.2879

Monoclonal antibodies detect and stabilize conformational states of smooth muscle myosin

PMCID: PMC2115922  PMID: 2480352

Abstract

Antibodies with epitopes near the heavy meromyosin/light meromyosin junction distinguish the folded from the extended conformational states of smooth muscle myosin. Antibody 10S.1 has 100-fold higher avidity for folded than for extended myosin, while antibody S2.2 binds preferentially to the extended state. The properties of these antibodies provide direct evidence that the conformation of the rod is different in the folded than the extended monomeric state, and suggest that this perturbation may extend into the subfragment 2 region of the rod. Two antihead antibodies with epitopes on the heavy chain map at or near the head/rod junction. Magnesium greatly enhances the binding of these antibodies to myosin, showing that the conformation of the heavy chain in the neck region changes upon divalent cation binding to the regulatory light chain. Myosin assembly is also altered by antibody binding. Antibodies that bind to the central region of the rod block disassembly of filaments upon MgATP addition. Antibodies with epitopes near the COOH terminus of the rod, in contrast, promote filament depolymerization, suggesting that this region of the tail is important for assembly. The monoclonal antibodies described here are therefore useful both for detecting and altering conformational states of smooth muscle myosin.

Full Text

The Full Text of this article is available as a PDF (1.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Atkinson M. A., Korn E. D. A model for the polymerization of Acanthamoeba myosin II and the regulation of its actin-activated Mg2+-ATPase activity. J Biol Chem. 1987 Nov 15;262(32):15809–15811. [PubMed] [Google Scholar]
  2. Castellani L., Cohen C. Rod phosphorylation favors folding in a catch muscle myosin. Proc Natl Acad Sci U S A. 1987 Jun;84(12):4058–4062. doi: 10.1073/pnas.84.12.4058. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Castellani L., Elliott B. W., Jr, Cohen C. Phosphorylatable serine residues are located in a non-helical tailpiece of a catch muscle myosin. J Muscle Res Cell Motil. 1988 Dec;9(6):533–540. doi: 10.1007/BF01738758. [DOI] [PubMed] [Google Scholar]
  4. Chacko S., Rosenfeld A. Regulation of actin-activated ATP hydrolysis by arterial myosin. Proc Natl Acad Sci U S A. 1982 Jan;79(2):292–296. doi: 10.1073/pnas.79.2.292. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Collins J. H., Kuznicki J., Bowers B., Korn E. D. Comparison of the actin binding and filament formation properties of phosphorylated and dephosphorylated Acanthamoeba myosin II. Biochemistry. 1982 Dec 21;21(26):6910–6915. doi: 10.1021/bi00269a045. [DOI] [PubMed] [Google Scholar]
  6. Cross R. A., Vandekerckhove J. Solubility-determining domain of smooth muscle myosin rod. FEBS Lett. 1986 May 12;200(2):355–360. doi: 10.1016/0014-5793(86)81168-1. [DOI] [PubMed] [Google Scholar]
  7. Flicker P. F., Wallimann T., Vibert P. Electron microscopy of scallop myosin. Location of regulatory light chains. J Mol Biol. 1983 Sep 25;169(3):723–741. doi: 10.1016/s0022-2836(83)80167-3. [DOI] [PubMed] [Google Scholar]
  8. Hammer J. A., 3rd, Bowers B., Paterson B. M., Korn E. D. Complete nucleotide sequence and deduced polypeptide sequence of a nonmuscle myosin heavy chain gene from Acanthamoeba: evidence of a hinge in the rodlike tail. J Cell Biol. 1987 Aug;105(2):913–925. doi: 10.1083/jcb.105.2.913. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hansen R. S., Beavo J. A. Purification of two calcium/calmodulin-dependent forms of cyclic nucleotide phosphodiesterase by using conformation-specific monoclonal antibody chromatography. Proc Natl Acad Sci U S A. 1982 May;79(9):2788–2792. doi: 10.1073/pnas.79.9.2788. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kawamoto S., Adelstein R. S. The heavy chain of smooth muscle myosin is phosphorylated in aorta cells. J Biol Chem. 1988 Jan 25;263(3):1099–1102. [PubMed] [Google Scholar]
  11. Kuznicki J., Albanesi J. P., Côté G. P., Korn E. D. Supramolecular regulation of the actin-activated ATPase activity of filaments of Acanthamoeba Myosin II. J Biol Chem. 1983 May 25;258(10):6011–6014. [PubMed] [Google Scholar]
  12. Kuznicki J., Côté G. P., Bowers B., Korn E. D. Filament formation and actin-activated ATPase activity are abolished by proteolytic removal of a small peptide from the tip of the tail of the heavy chain of Acanthamoeba myosin II. J Biol Chem. 1985 Feb 10;260(3):1967–1972. [PubMed] [Google Scholar]
  13. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  14. Lafer E. M., Möller A., Nordheim A., Stollar B. D., Rich A. Antibodies specific for left-handed Z-DNA. Proc Natl Acad Sci U S A. 1981 Jun;78(6):3546–3550. doi: 10.1073/pnas.78.6.3546. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Marianne-Pépin T., Mornet D., Audemard E., Kassab R. Structural and actin-binding properties of the trypsin-produced HMM and S1 from gizzard smooth muscle myosin. FEBS Lett. 1983 Aug 8;159(1-2):211–216. doi: 10.1016/0014-5793(83)80448-7. [DOI] [PubMed] [Google Scholar]
  16. Nagai R., Larson D. M., Periasamy M. Characterization of a mammalian smooth muscle myosin heavy chain cDNA clone and its expression in various smooth muscle types. Proc Natl Acad Sci U S A. 1988 Feb;85(4):1047–1051. doi: 10.1073/pnas.85.4.1047. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Nath N., Nag S., Seidel J. C. Location of the sites of reaction of N-ethylmaleimide in papain and chymotryptic fragments of the gizzard myosin heavy chain. Biochemistry. 1986 Oct 7;25(20):6169–6176. doi: 10.1021/bi00368a051. [DOI] [PubMed] [Google Scholar]
  18. Neal M. W., Florini J. R. A rapid method for desalting small volumes of solution. Anal Biochem. 1973 Sep;55(1):328–330. doi: 10.1016/0003-2697(73)90325-4. [DOI] [PubMed] [Google Scholar]
  19. Nyitray L., Mocz G., Szilagyi L., Balint M., Lu R. C., Wong A., Gergely J. The proteolytic substructure of light meromyosin. Localization of a region responsible for the low ionic strength insolubility of myosin. J Biol Chem. 1983 Nov 10;258(21):13213–13220. [PubMed] [Google Scholar]
  20. Onishi H., Wakabayashi T. Electron microscopic studies of myosin molecules from chicken gizzard muscle I: the formation of the intramolecular loop in the myosin tail. J Biochem. 1982 Sep;92(3):871–879. doi: 10.1093/oxfordjournals.jbchem.a134001. [DOI] [PubMed] [Google Scholar]
  21. Pagh K., Gerisch G. Monoclonal antibodies binding to the tail of Dictyostelium discoideum myosin: their effects on antiparallel and parallel assembly and actin-activated ATPase activity. J Cell Biol. 1986 Oct;103(4):1527–1538. doi: 10.1083/jcb.103.4.1527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Pagh K., Maruta H., Claviez M., Gerisch G. Localization of two phosphorylation sites adjacent to a region important for polymerization on the tail of Dictyostelium myosin. EMBO J. 1984 Dec 20;3(13):3271–3278. doi: 10.1002/j.1460-2075.1984.tb02289.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Peltz G., Spudich J. A., Parham P. Monoclonal antibodies against seven sites on the head and tail of Dictyostelium myosin. J Cell Biol. 1985 Apr;100(4):1016–1023. doi: 10.1083/jcb.100.4.1016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Sellers J. R., Pato M. D., Adelstein R. S. Reversible phosphorylation of smooth muscle myosin, heavy meromyosin, and platelet myosin. J Biol Chem. 1981 Dec 25;256(24):13137–13142. [PubMed] [Google Scholar]
  25. Shimizu T., Reinach F. C., Masaki T., Fischman D. A. Analysis of the metal-induced conformational change in myosin with a monoclonal antibody to light chain two. J Mol Biol. 1985 May 25;183(2):271–282. doi: 10.1016/0022-2836(85)90220-7. [DOI] [PubMed] [Google Scholar]
  26. Shulman M., Wilde C. D., Köhler G. A better cell line for making hybridomas secreting specific antibodies. Nature. 1978 Nov 16;276(5685):269–270. doi: 10.1038/276269a0. [DOI] [PubMed] [Google Scholar]
  27. Suzuki H., Onishi H., Takahashi K., Watanabe S. Structure and function of chicken gizzard myosin. J Biochem. 1978 Dec;84(6):1529–1542. doi: 10.1093/oxfordjournals.jbchem.a132278. [DOI] [PubMed] [Google Scholar]
  28. Tai M. M., Furie B. C., Furie B. Conformation-specific antibodies directed against the bovine prothrombin . calcium complex. J Biol Chem. 1980 Apr 10;255(7):2790–2795. [PubMed] [Google Scholar]
  29. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Trybus K. M. Filamentous smooth muscle myosin is regulated by phosphorylation. J Cell Biol. 1989 Dec;109(6 Pt 1):2887–2894. doi: 10.1083/jcb.109.6.2887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Trybus K. M., Huiatt T. W., Lowey S. A bent monomeric conformation of myosin from smooth muscle. Proc Natl Acad Sci U S A. 1982 Oct;79(20):6151–6155. doi: 10.1073/pnas.79.20.6151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Trybus K. M., Lowey S. Conformational states of smooth muscle myosin. Effects of light chain phosphorylation and ionic strength. J Biol Chem. 1984 Jul 10;259(13):8564–8571. [PubMed] [Google Scholar]
  33. Trybus K. M., Lowey S. Subunit exchange between smooth muscle myosin filaments. J Cell Biol. 1987 Dec;105(6 Pt 2):3021–3030. doi: 10.1083/jcb.105.6.3021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Trybus K. M., Lowey S. The regulatory light chain is required for folding of smooth muscle myosin. J Biol Chem. 1988 Nov 5;263(31):16485–16492. [PubMed] [Google Scholar]
  35. Tyler J. M., Branton D. Rotary shadowing of extended molecules dried from glycerol. J Ultrastruct Res. 1980 May;71(2):95–102. doi: 10.1016/s0022-5320(80)90098-2. [DOI] [PubMed] [Google Scholar]
  36. Winkelmann D. A., Lowey S., Press J. L. Monoclonal antibodies localize changes on myosin heavy chain isozymes during avian myogenesis. Cell. 1983 Aug;34(1):295–306. doi: 10.1016/0092-8674(83)90160-5. [DOI] [PubMed] [Google Scholar]
  37. Yanagisawa M., Hamada Y., Katsuragawa Y., Imamura M., Mikawa T., Masaki T. Complete primary structure of vertebrate smooth muscle myosin heavy chain deduced from its complementary DNA sequence. Implications on topography and function of myosin. J Mol Biol. 1987 Nov 20;198(2):143–157. doi: 10.1016/0022-2836(87)90302-0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES