Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1989 Dec 1;109(6):3231–3242. doi: 10.1083/jcb.109.6.3231

Use of transgenic mice to study the routing of secretory proteins in intestinal epithelial cells: analysis of human growth hormone compartmentalization as a function of cell type and differentiation [published erratum appears in J Cell Biol 1990 Jan;110(1):following 227]

PMCID: PMC2115925  PMID: 2689454

Abstract

The intestinal epithelium is a heterogeneous cell monolayer that undergoes continuous renewal and differentiation along the crypt-villus axis. We have used transgenic mice to examine the compartmentalization of a regulated endocrine secretory protein, human growth hormone (hGH), in the four exocrine cells of the mouse intestinal epithelium (Paneth cells, intermediate cells, typical goblet cells, and granular goblet cells), as well as in its enteroendocrine and absorptive (enterocyte) cell populations. Nucleotides -596 to +21 of the rat liver fatty acid binding protein gene, when linked to the hGH gene (beginning at nucleotide +3) direct efficient synthesis of hGH in the gastrointestinal epithelium of transgenic animals (Sweetser, D. A., D. W. McKeel, E. F. Birkenmeier, P. C. Hoppe, and J. I. Gordon. 1988. Genes & Dev. 2:1318-1332). This provides a powerful in vivo model for analyzing protein sorting in diverse, differentiating, and polarized epithelial cells. Using EM immunocytochemical techniques, we demonstrated that this foreign polypeptide hormone entered the regulated basal granules of enteroendocrine cells as well as the apical secretory granules of exocrine Paneth cells, intermediate cells, and granular goblet cells. This suggests that common signals are recognized by the "sorting mechanisms" in regulated endocrine and exocrine cells. hGH was targeted to the electron-dense cores of secretory granules in granular goblet and intermediate cells, along with endogenous cell products. Thus, this polypeptide hormone contains domains that promote its segregation within certain exocrine granules. No expression of hGH was noted in typical goblet cells, suggesting that differences exist in the regulatory environments of granular and typical goblet cells. In enterocytes, hGH accumulated in dense-core granules located near apical and lateral cell surfaces, raising the possibility that these cells, which are known to conduct constitutive vesicular transport toward both apical and basolateral surfaces, also contain a previously unrecognized regulated pathway. Together our studies indicate that transgenic mice represent a valuable system for analyzing trafficking pathways and sorting mechanisms of secretory proteins in vivo.

Full Text

The Full Text of this article is available as a PDF (5.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Achler C., Filmer D., Merte C., Drenckhahn D. Role of microtubules in polarized delivery of apical membrane proteins to the brush border of the intestinal epithelium. J Cell Biol. 1989 Jul;109(1):179–189. doi: 10.1083/jcb.109.1.179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Arvan P., Chang A. Constitutive protein secretion from the exocrine pancreas of fetal rats. J Biol Chem. 1987 Mar 15;262(8):3886–3890. [PubMed] [Google Scholar]
  3. Bennett G., Carlet E., Wild G., Parsons S. Influence of colchicine and vinblastine on the intracellular migration of secretory and membrane glycoproteins: III. Inhibition of intracellular migration of membrane glycoproteins in rat intestinal columnar cells and hepatocytes as visualized by light and electron-microscope radioautography after 3H-fucose injection. Am J Anat. 1984 Aug;170(4):545–566. doi: 10.1002/aja.1001700404. [DOI] [PubMed] [Google Scholar]
  4. Bennett G., Leblond C. P., Haddad A. Migration of glycoprotein from the Golgi apparatus to the surface of various cell types as shown by radioautography after labelled fucose injection into rats. J Cell Biol. 1974 Jan;60(1):258–284. doi: 10.1083/jcb.60.1.258. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Blok J., Ginsel L. A., Mulder-Stapel A. A., Onderwater J. J., Daems W. T. The effect of colchicine on the intracellular transport of 3H-fucose-labelled glycoproteins in the absorptive cells of cultured human small-intestinal tissue. An autoradiographical and biochemical study. Cell Tissue Res. 1981;215(1):1–12. doi: 10.1007/BF00236244. [DOI] [PubMed] [Google Scholar]
  6. Burgess T. L., Craik C. S., Kelly R. B. The exocrine protein trypsinogen is targeted into the secretory granules of an endocrine cell line: studies by gene transfer. J Cell Biol. 1985 Aug;101(2):639–645. doi: 10.1083/jcb.101.2.639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Burgess T. L., Kelly R. B. Constitutive and regulated secretion of proteins. Annu Rev Cell Biol. 1987;3:243–293. doi: 10.1146/annurev.cb.03.110187.001331. [DOI] [PubMed] [Google Scholar]
  8. Calvert R., Bordeleau G., Grondin G., Vezina A., Ferrari J. On the presence of intermediate cells in the small intestine. Anat Rec. 1988 Mar;220(3):291–295. doi: 10.1002/ar.1092200310. [DOI] [PubMed] [Google Scholar]
  9. Cardell R. R., Jr, Badenhausen S., Porter K. R. Intestinal triglyceride absorption in the rat. An electron microscopical study. J Cell Biol. 1967 Jul;34(1):123–155. doi: 10.1083/jcb.34.1.123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Cheng H., Leblond C. P. Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. V. Unitarian Theory of the origin of the four epithelial cell types. Am J Anat. 1974 Dec;141(4):537–561. doi: 10.1002/aja.1001410407. [DOI] [PubMed] [Google Scholar]
  11. Danielsen E. M., Cowell G. M. Biosynthesis of intestinal microvillar proteins. Evidence for an intracellular sorting taking place in, or shortly after, exit from the Golgi complex. Eur J Biochem. 1985 Oct 15;152(2):493–499. doi: 10.1111/j.1432-1033.1985.tb09223.x. [DOI] [PubMed] [Google Scholar]
  12. Daughaday W. H., Starkey R. H., Saltman S., Gavin J. R., 3rd, Mills-Dunlap B., Heath-Monnig E. Characterization of serum growth hormone (GH) and insulin-like growth factor I in active acromegaly with minimal elevation of serum GH. J Clin Endocrinol Metab. 1987 Oct;65(4):617–623. doi: 10.1210/jcem-65-4-617. [DOI] [PubMed] [Google Scholar]
  13. Fennewald S. M., Hamilton R. L., Jr, Gordon J. I. Expression of human preproapo AI and pre(delta pro)apoAI in a murine pituitary cell line (AtT-20). A comparison of their intracellular compartmentalization and lipid affiliation. J Biol Chem. 1988 Oct 25;263(30):15568–15577. [PubMed] [Google Scholar]
  14. Fransen J. A., Ginsel L. A., Hauri H. P., Sterchi E., Blok J. Immuno-electronmicroscopical localization of a microvillus membrane disaccharidase in the human small-intestinal epithelium with monoclonal antibodies. Eur J Cell Biol. 1985 Jul;38(1):6–15. [PubMed] [Google Scholar]
  15. Godefroy O., Huet C., Blair L. A., Sahuquillo-Merino C., Louvard D. Differentiation of a clone isolated from the HT29 cell line: polarized distribution of histocompatibility antigens (HLA) and of transferrin receptors. Biol Cell. 1988;63(1):41–55. [PubMed] [Google Scholar]
  16. Gordon J. I. Intestinal epithelial differentiation: new insights from chimeric and transgenic mice. J Cell Biol. 1989 Apr;108(4):1187–1194. doi: 10.1083/jcb.108.4.1187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hauri H. P., Sterchi E. E., Bienz D., Fransen J. A., Marxer A. Expression and intracellular transport of microvillus membrane hydrolases in human intestinal epithelial cells. J Cell Biol. 1985 Sep;101(3):838–851. doi: 10.1083/jcb.101.3.838. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Huet C., Sahuquillo-Merino C., Coudrier E., Louvard D. Absorptive and mucus-secreting subclones isolated from a multipotent intestinal cell line (HT-29) provide new models for cell polarity and terminal differentiation. J Cell Biol. 1987 Jul;105(1):345–357. doi: 10.1083/jcb.105.1.345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Ingber D. E., Madri J. A., Jamieson J. D. Basement membrane as a spatial organizer of polarized epithelia. Exogenous basement membrane reorients pancreatic epithelial tumor cells in vitro. Am J Pathol. 1986 Jan;122(1):129–139. [PMC free article] [PubMed] [Google Scholar]
  20. Kelly R. B. Pathways of protein secretion in eukaryotes. Science. 1985 Oct 4;230(4721):25–32. doi: 10.1126/science.2994224. [DOI] [PubMed] [Google Scholar]
  21. Le Bivic A., Bosc-Biern I., Reggio H. Characterization of a glycoprotein expressed on the basolateral membrane of human intestinal epithelial cells and cultured colonic cell lines. Eur J Cell Biol. 1988 Apr;46(1):113–120. [PubMed] [Google Scholar]
  22. Le Bivic A., Hirn M., Reggio H. HT-29 cells are an in vitro model for the generation of cell polarity in epithelia during embryonic differentiation. Proc Natl Acad Sci U S A. 1988 Jan;85(1):136–140. doi: 10.1073/pnas.85.1.136. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Logsdon C. D., Moessner J., Williams J. A., Goldfine I. D. Glucocorticoids increase amylase mRNA levels, secretory organelles, and secretion in pancreatic acinar AR42J cells. J Cell Biol. 1985 Apr;100(4):1200–1208. doi: 10.1083/jcb.100.4.1200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Lopez-Lewellyn J., Erlandsen S. L. Cytodifferentiation of the rat Paneth cell: an immunocytochemical investigation in suckling and weanling animals. Am J Anat. 1980 Jul;158(3):285–297. doi: 10.1002/aja.1001580305. [DOI] [PubMed] [Google Scholar]
  25. Lorenzsonn V., Korsmo H., Olsen W. A. Localization of sucrase-isomaltase in the rat enterocyte. Gastroenterology. 1987 Jan;92(1):98–105. doi: 10.1016/0016-5085(87)90844-4. [DOI] [PubMed] [Google Scholar]
  26. Massey D., Feracci H., Gorvel J. P., Rigal A., Soulié J. M., Maroux S. Evidence for the transit of aminopeptidase N through the basolateral membrane before it reaches the brush border of enterocytes. J Membr Biol. 1987;96(1):19–25. doi: 10.1007/BF01869331. [DOI] [PubMed] [Google Scholar]
  27. Matsuuchi L., Buckley K. M., Lowe A. W., Kelly R. B. Targeting of secretory vesicles to cytoplasmic domains in AtT-20 and PC-12 cells. J Cell Biol. 1988 Feb;106(2):239–251. doi: 10.1083/jcb.106.2.239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. McLean I. W., Nakane P. K. Periodate-lysine-paraformaldehyde fixative. A new fixation for immunoelectron microscopy. J Histochem Cytochem. 1974 Dec;22(12):1077–1083. doi: 10.1177/22.12.1077. [DOI] [PubMed] [Google Scholar]
  29. Merzel J., Leblond C. P. Origin and renewal of goblet cells in the epithelium of the mouse small intestine. Am J Anat. 1969 Mar;124(3):281–305. doi: 10.1002/aja.1001240303. [DOI] [PubMed] [Google Scholar]
  30. Moktari S., Feracci H., Gorvel J. P., Mishal Z., Rigal A., Maroux S. Subcellular fractionation and subcellular localization of aminopeptidase N in the rabbit enterocytes. J Membr Biol. 1986;89(1):53–63. doi: 10.1007/BF01870895. [DOI] [PubMed] [Google Scholar]
  31. Moore H. H., Kelly R. B. Re-routing of a secretory protein by fusion with human growth hormone sequences. Nature. 1986 May 22;321(6068):443–446. doi: 10.1038/321443a0. [DOI] [PubMed] [Google Scholar]
  32. Moore H. P., Kelly R. B. Secretory protein targeting in a pituitary cell line: differential transport of foreign secretory proteins to distinct secretory pathways. J Cell Biol. 1985 Nov;101(5 Pt 1):1773–1781. doi: 10.1083/jcb.101.5.1773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Moore H. P., Walker M. D., Lee F., Kelly R. B. Expressing a human proinsulin cDNA in a mouse ACTH-secreting cell. Intracellular storage, proteolytic processing, and secretion on stimulation. Cell. 1983 Dec;35(2 Pt 1):531–538. doi: 10.1016/0092-8674(83)90187-3. [DOI] [PubMed] [Google Scholar]
  34. Ornitz D. M., Palmiter R. D., Hammer R. E., Brinster R. L., Swift G. H., MacDonald R. J. Specific expression of an elastase-human growth hormone fusion gene in pancreatic acinar cells of transgenic mice. Nature. 1985 Feb 14;313(6003):600–602. doi: 10.1038/313600a0. [DOI] [PubMed] [Google Scholar]
  35. Ouellette A. J., Greco R. M., James M., Frederick D., Naftilan J., Fallon J. T. Developmental regulation of cryptdin, a corticostatin/defensin precursor mRNA in mouse small intestinal crypt epithelium. J Cell Biol. 1989 May;108(5):1687–1695. doi: 10.1083/jcb.108.5.1687. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Phillips T. E., Huet C., Bilbo P. R., Podolsky D. K., Louvard D., Neutra M. R. Human intestinal goblet cells in monolayer culture: characterization of a mucus-secreting subclone derived from the HT29 colon adenocarcinoma cell line. Gastroenterology. 1988 Jun;94(6):1390–1403. doi: 10.1016/0016-5085(88)90678-6. [DOI] [PubMed] [Google Scholar]
  37. Ponder B. A., Schmidt G. H., Wilkinson M. M., Wood M. J., Monk M., Reid A. Derivation of mouse intestinal crypts from single progenitor cells. Nature. 1985 Feb 21;313(6004):689–691. doi: 10.1038/313689a0. [DOI] [PubMed] [Google Scholar]
  38. Reggio H., Webster P., Louvard D. Use of immunocytochemical techniques in studying the biogenesis of cell surfaces in polarized epithelia. Methods Enzymol. 1983;98:379–395. doi: 10.1016/0076-6879(83)98166-1. [DOI] [PubMed] [Google Scholar]
  39. Rindler M. J., Traber M. G. A specific sorting signal is not required for the polarized secretion of newly synthesized proteins from cultured intestinal epithelial cells. J Cell Biol. 1988 Aug;107(2):471–479. doi: 10.1083/jcb.107.2.471. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Rousset M. The human colon carcinoma cell lines HT-29 and Caco-2: two in vitro models for the study of intestinal differentiation. Biochimie. 1986 Sep;68(9):1035–1040. doi: 10.1016/s0300-9084(86)80177-8. [DOI] [PubMed] [Google Scholar]
  41. Schweitzer E. S., Kelly R. B. Selective packaging of human growth hormone into synaptic vesicles in a rat neuronal (PC12) cell line. J Cell Biol. 1985 Aug;101(2):667–676. doi: 10.1083/jcb.101.2.667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Simon P. M., Kedinger M., Raul F., Grenier J. F., Haffen K. Developmental pattern of rat intestinal brush-border enzymic proteins along the villus--crypt axis. Biochem J. 1979 Feb 15;178(2):407–413. doi: 10.1042/bj1780407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Sweetser D. A., Birkenmeier E. H., Hoppe P. C., McKeel D. W., Gordon J. I. Mechanisms underlying generation of gradients in gene expression within the intestine: an analysis using transgenic mice containing fatty acid binding protein-human growth hormone fusion genes. Genes Dev. 1988 Oct;2(10):1318–1332. doi: 10.1101/gad.2.10.1318. [DOI] [PubMed] [Google Scholar]
  44. Sweetser D. A., Birkenmeier E. H., Klisak I. J., Zollman S., Sparkes R. S., Mohandas T., Lusis A. J., Gordon J. I. The human and rodent intestinal fatty acid binding protein genes. A comparative analysis of their structure, expression, and linkage relationships. J Biol Chem. 1987 Nov 25;262(33):16060–16071. [PubMed] [Google Scholar]
  45. Sweetser D. A., Hauft S. M., Hoppe P. C., Birkenmeier E. H., Gordon J. I. Transgenic mice containing intestinal fatty acid-binding protein-human growth hormone fusion genes exhibit correct regional and cell-specific expression of the reporter gene in their small intestine. Proc Natl Acad Sci U S A. 1988 Dec;85(24):9611–9615. doi: 10.1073/pnas.85.24.9611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Traber M. G., Kayden H. J., Rindler M. J. Polarized secretion of newly synthesized lipoproteins by the Caco-2 human intestinal cell line. J Lipid Res. 1987 Nov;28(11):1350–1363. [PubMed] [Google Scholar]
  47. Troughton W. D., Trier J. S. Paneth and goblet cell renewal in mouse duodenal crypts. J Cell Biol. 1969 Apr;41(1):251–268. doi: 10.1083/jcb.41.1.251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Trugnan G., Rousset M., Chantret I., Barbat A., Zweibaum A. The posttranslational processing of sucrase-isomaltase in HT-29 cells is a function of their state of enterocytic differentiation. J Cell Biol. 1987 May;104(5):1199–1205. doi: 10.1083/jcb.104.5.1199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. von Zastrow M., Castle J. D. Protein sorting among two distinct export pathways occurs from the content of maturing exocrine storage granules. J Cell Biol. 1987 Dec;105(6 Pt 1):2675–2684. doi: 10.1083/jcb.105.6.2675. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES