Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1989 Dec 1;109(6):2963–2975. doi: 10.1083/jcb.109.6.2963

Actin-binding proteins from Drosophila embryos: a complex network of interacting proteins detected by F-actin affinity chromatography

PMCID: PMC2115944  PMID: 2512303

Abstract

By using F-actin affinity chromatography columns to select proteins solely by their ability to bind to actin filaments, we have identified and partially purified greater than 40 proteins from early Drosophila embryos. These proteins represent approximately 0.5% of the total protein present in soluble cell extracts, and 2 mg are obtained by chromatography of an extract from 10 g of embryos. As judged by immunofluorescence of fixed embryos, 90% of the proteins that we have detected in F-actin column eluates are actin-associated in vivo (12 of 13 proteins tested). The distributions of antigens observed suggest that groups of these proteins cooperate in generating unique actin structures at different places in the cell. These structures change as cells progress through the cell cycle and as they undergo the specializations that accompany development. The variety of different spatial localizations that we have observed in a small subset of the total actin-binding proteins suggests that the actin cytoskeleton is a very complex network of interacting proteins.

Full Text

The Full Text of this article is available as a PDF (4.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berrios M., Fisher P. A. A myosin heavy-chain-like polypeptide is associated with the nuclear envelope in higher eukaryotic cells. J Cell Biol. 1986 Sep;103(3):711–724. doi: 10.1083/jcb.103.3.711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  3. Bretscher A., Weber K. Villin is a major protein of the microvillus cytoskeleton which binds both G and F actin in a calcium-dependent manner. Cell. 1980 Jul;20(3):839–847. doi: 10.1016/0092-8674(80)90330-x. [DOI] [PubMed] [Google Scholar]
  4. Dubreuil R., Byers T. J., Branton D., Goldstein L. S., Kiehart D. P. Drosophilia spectrin. I. Characterization of the purified protein. J Cell Biol. 1987 Nov;105(5):2095–2102. doi: 10.1083/jcb.105.5.2095. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Edgar B. A., Odell G. M., Schubiger G. Cytoarchitecture and the patterning of fushi tarazu expression in the Drosophila blastoderm. Genes Dev. 1987 Dec;1(10):1226–1237. doi: 10.1101/gad.1.10.1226. [DOI] [PubMed] [Google Scholar]
  6. Foe V. E., Alberts B. M. Studies of nuclear and cytoplasmic behaviour during the five mitotic cycles that precede gastrulation in Drosophila embryogenesis. J Cell Sci. 1983 May;61:31–70. doi: 10.1242/jcs.61.1.31. [DOI] [PubMed] [Google Scholar]
  7. Karr T. L., Alberts B. M. Organization of the cytoskeleton in early Drosophila embryos. J Cell Biol. 1986 Apr;102(4):1494–1509. doi: 10.1083/jcb.102.4.1494. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kellogg D. R., Field C. M., Alberts B. M. Identification of microtubule-associated proteins in the centrosome, spindle, and kinetochore of the early Drosophila embryo. J Cell Biol. 1989 Dec;109(6 Pt 1):2977–2991. doi: 10.1083/jcb.109.6.2977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kiehart D. P., Feghali R. Cytoplasmic myosin from Drosophila melanogaster. J Cell Biol. 1986 Oct;103(4):1517–1525. doi: 10.1083/jcb.103.4.1517. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  11. Miller K. G., Alberts B. M. F-actin affinity chromatography: technique for isolating previously unidentified actin-binding proteins. Proc Natl Acad Sci U S A. 1989 Jul;86(13):4808–4812. doi: 10.1073/pnas.86.13.4808. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Miller K. G., Karr T. L., Kellogg D. R., Mohr I. J., Walter M., Alberts B. M. Studies on the cytoplasmic organization of early Drosophila embryos. Cold Spring Harb Symp Quant Biol. 1985;50:79–90. doi: 10.1101/sqb.1985.050.01.012. [DOI] [PubMed] [Google Scholar]
  13. Pollard T. D., Tseng P. C., Rimm D. L., Bichell D. P., Williams R. C., Jr, Sinard J., Sato M. Characterization of alpha-actinin from Acanthamoeba. Cell Motil Cytoskeleton. 1986;6(6):649–661. doi: 10.1002/cm.970060613. [DOI] [PubMed] [Google Scholar]
  14. Stafstrom J. P., Staehelin L. A. Dynamics of the nuclear envelope and of nuclear pore complexes during mitosis in the Drosophila embryo. Eur J Cell Biol. 1984 May;34(1):179–189. [PubMed] [Google Scholar]
  15. Stossel T. P., Chaponnier C., Ezzell R. M., Hartwig J. H., Janmey P. A., Kwiatkowski D. J., Lind S. E., Smith D. B., Southwick F. S., Yin H. L. Nonmuscle actin-binding proteins. Annu Rev Cell Biol. 1985;1:353–402. doi: 10.1146/annurev.cb.01.110185.002033. [DOI] [PubMed] [Google Scholar]
  16. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Warn R. M., Magrath R., Webb S. Distribution of F-actin during cleavage of the Drosophila syncytial blastoderm. J Cell Biol. 1984 Jan;98(1):156–162. doi: 10.1083/jcb.98.1.156. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Warn R. M., Warn A. Microtubule arrays present during the syncytial and cellular blastoderm stages of the early Drosophila embryo. Exp Cell Res. 1986 Mar;163(1):201–210. doi: 10.1016/0014-4827(86)90573-2. [DOI] [PubMed] [Google Scholar]
  19. White J. G., Amos W. B., Fordham M. An evaluation of confocal versus conventional imaging of biological structures by fluorescence light microscopy. J Cell Biol. 1987 Jul;105(1):41–48. doi: 10.1083/jcb.105.1.41. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES