Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1989 Dec 1;109(6):3005–3013. doi: 10.1083/jcb.109.6.3005

Cytoskeletal distribution and function during the maturation and enucleation of mammalian erythroblasts

PMCID: PMC2115945  PMID: 2574178

Abstract

We have used murine splenic erythrolasts infected with the anemia- inducing strain of Friend virus (FVA cells), as an in vitro model to study cytoskeletal elements during erythroid maturation and enucleation. FVA cells are capable of enucleating in suspension culture in vitro, indicating that associations with an extracellular matrix or accessory cells are not required for enucleation to occur. The morphology of FVA cells undergoing enucleation is nearly identical to erythroblasts enucleating in vivo. The nucleus is segregated to one side of the cell and then appears to be pinched off resulting in an extruded nucleus and reticulocyte. The extruded nucleus is surrounded by an intact plasma membrane and has little cytoplasm associated with it. Newly formed reticulocytes have an irregular shape, are vacuolated and contain all cytoplasmic organelles. The spatial distribution of several cytoskeletal proteins was examined during the maturation process. Spectrin was found associated with the plasma membrane of FVA cells at all stages of maturation but was segregated entirely to the incipient reticulocyte during enucleation. Microtubules formed cages around nuclei in immature FVA cells and were found primarily in the incipient reticulocyte in cells undergoing enucleation. Reticulocytes occasionally contained microtubules, but a generalized diffuse distribution of tubulin was more common. Vimentin could not be detected at any time in FVA cell maturation. Filamentous actin (F-actin) had a patchy distribution at the cell surface in the most immature erythroblasts, but F-actin bundles could be detected as the cells matured. F-actin was found concentrated between the extruding nucleus and incipient reticulocyte in enucleating erythroblasts. Newly formed reticulocytes exhibited punctate actin fluorescence whereas extruded nuclei lacked F-actin. Addition of colchicine, vinblastine, or taxol to cultures of FVA cells did not affect enucleation. In contrast, cytochalasin D caused a complete inhibition of enucleation that could be reversed by washing out the cytochalasin D. These results demonstrate that F-actin plays a role in enucleation while the complete absence of microtubules or excessive numbers of polymerized microtubules do not affect enucleation.

Full Text

The Full Text of this article is available as a PDF (3.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Behnke O. Microtubules in disk-shaped blood cells. Int Rev Exp Pathol. 1970;9:1–92. [PubMed] [Google Scholar]
  2. Campbell F. R. Nuclear elimination from the normoblast of fetal guinea pig liver as studied with electron microscopy and serial sectioning techniques. Anat Rec. 1968 Mar;160(3):539–554. doi: 10.1002/ar.1091600304. [DOI] [PubMed] [Google Scholar]
  3. Dellagi K., Vainchenker W., Vinci G., Paulin D., Brouet J. C. Alteration of vimentin intermediate filament expression during differentiation of human hemopoietic cells. EMBO J. 1983;2(9):1509–1514. doi: 10.1002/j.1460-2075.1983.tb01615.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Geiduschek J. B., Singer S. J. Molecular changes in the membranes of mouse erythroid cells accompanying differentiation. Cell. 1979 Jan;16(1):149–163. doi: 10.1016/0092-8674(79)90196-x. [DOI] [PubMed] [Google Scholar]
  5. Granger B. L., Repasky E. A., Lazarides E. Synemin and vimentin are components of intermediate filaments in avian erythrocytes. J Cell Biol. 1982 Feb;92(2):299–312. doi: 10.1083/jcb.92.2.299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Kletzien R. F., Perdue J. F., Springer A. Cytochalasin A and B. Inhibition of sugar uptake in cultured cells. J Biol Chem. 1972 May 10;247(9):2964–2966. [PubMed] [Google Scholar]
  7. Koury M. J., Bondurant M. C., Rana S. S. Changes in erythroid membrane proteins during erythropoietin-mediated terminal differentiation. J Cell Physiol. 1987 Dec;133(3):438–448. doi: 10.1002/jcp.1041330304. [DOI] [PubMed] [Google Scholar]
  8. Koury M. J., Kost T. A., Hankins W. D., Krantz S. B. Response of erythroid day 3 burst-forming units to endotoxin and erythropoietin. Proc Soc Exp Biol Med. 1979 Nov;162(2):275–280. doi: 10.3181/00379727-162-40664. [DOI] [PubMed] [Google Scholar]
  9. Koury M. J., Sawyer S. T., Bondurant M. C. Splenic erythroblasts in anemia-inducing Friend disease: a source of cells for studies of erythropoietin-mediated differentiation. J Cell Physiol. 1984 Dec;121(3):526–532. doi: 10.1002/jcp.1041210311. [DOI] [PubMed] [Google Scholar]
  10. Koury S. T., Koury M. J., Bondurant M. C. Morphological changes in erythroblasts during erythropoietin-induced terminal differentiation in vitro. Exp Hematol. 1988 Oct;16(9):758–763. [PubMed] [Google Scholar]
  11. Lee J. K., Repasky E. A. Cytoskeletal polarity in mammalian lymphocytes in situ. Cell Tissue Res. 1987 Jan;247(1):195–202. doi: 10.1007/BF00216562. [DOI] [PubMed] [Google Scholar]
  12. Ngai J., Capetanaki Y. G., Lazarides E. Differentiation of murine erythroleukemia cells results in the rapid repression of vimentin gene expression. J Cell Biol. 1984 Jul;99(1 Pt 1):306–314. doi: 10.1083/jcb.99.1.306. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ornelles D. A., Fey E. G., Penman S. Cytochalasin releases mRNA from the cytoskeletal framework and inhibits protein synthesis. Mol Cell Biol. 1986 May;6(5):1650–1662. doi: 10.1128/mcb.6.5.1650. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Patel V. P., Lodish H. F. A fibronectin matrix is required for differentiation of murine erythroleukemia cells into reticulocytes. J Cell Biol. 1987 Dec;105(6 Pt 2):3105–3118. doi: 10.1083/jcb.105.6.3105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Perry M. M., John H. A., Thomas N. S. Actin-like filaments in the cleavage furrow of newt egg. Exp Cell Res. 1971 Mar;65(1):249–253. doi: 10.1016/s0014-4827(71)80075-7. [DOI] [PubMed] [Google Scholar]
  16. Rampal A. L., Pinkofsky H. B., Jung C. Y. Structure of cytochalasins and cytochalasin B binding sites in human erythrocyte membranes. Biochemistry. 1980 Feb 19;19(4):679–683. doi: 10.1021/bi00545a011. [DOI] [PubMed] [Google Scholar]
  17. Repasky E. A., Eckert B. S. A reevaluation of the process of enucleation in mammalian erythroid cells. Prog Clin Biol Res. 1981;55:679–692. [PubMed] [Google Scholar]
  18. Repasky E. A., Eckert B. S. The effect of cytochalasin B on the enucleation of erythroid cells in vitro. Cell Tissue Res. 1981;221(1):85–91. doi: 10.1007/BF00216572. [DOI] [PubMed] [Google Scholar]
  19. Sawyer S. T., Koury M. J., Bondurant M. C. Large-scale procurement of erythropoietin-responsive erythroid cells: assay for biological activity of erythropoietin. Methods Enzymol. 1987;147:340–352. doi: 10.1016/0076-6879(87)47123-1. [DOI] [PubMed] [Google Scholar]
  20. Schliwa M., van Blerkom J. Structural interaction of cytoskeletal components. J Cell Biol. 1981 Jul;90(1):222–235. doi: 10.1083/jcb.90.1.222. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Schroeder T. E. Actin in dividing cells: contractile ring filaments bind heavy meromyosin. Proc Natl Acad Sci U S A. 1973 Jun;70(6):1688–1692. doi: 10.1073/pnas.70.6.1688. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Simpson C. F., Kling J. M. The mechanism of denucleation in circulating erythroblasts. J Cell Biol. 1967 Oct;35(1):237–245. doi: 10.1083/jcb.35.1.237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Skutelsky E., Danon D. An electron microscopic study of nuclear elimination from the late erythroblast. J Cell Biol. 1967 Jun;33(3):625–635. doi: 10.1083/jcb.33.3.625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Skutelsky E., Danon D. Comparative study of nuclear expulsion from the late erythroblast and cytokinesis. Exp Cell Res. 1970 Jun;60(3):427–436. doi: 10.1016/0014-4827(70)90536-7. [DOI] [PubMed] [Google Scholar]
  25. Spurr A. R. A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res. 1969 Jan;26(1):31–43. doi: 10.1016/s0022-5320(69)90033-1. [DOI] [PubMed] [Google Scholar]
  26. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. VENABLE J. H., COGGESHALL R. A SIMPLIFIED LEAD CITRATE STAIN FOR USE IN ELECTRON MICROSCOPY. J Cell Biol. 1965 May;25:407–408. doi: 10.1083/jcb.25.2.407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Virtanen I., Kurkinen M., Lehto V. P. Nucleus-anchoring cytoskeleton in chicken red blood cells. Cell Biol Int Rep. 1979 Mar;3(2):157–162. doi: 10.1016/0309-1651(79)90121-8. [DOI] [PubMed] [Google Scholar]
  29. Yurchenco P. D., Furthmayr H. Expression of red cell membrane proteins in erythroid precursor cells. J Supramol Struct. 1980;13(2):255–269. doi: 10.1002/jss.400130213. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES