Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1989 Dec 1;109(6):3243–3258. doi: 10.1083/jcb.109.6.3243

Endocytosis in filter-grown Madin-Darby canine kidney cells

PMCID: PMC2115947  PMID: 2689455

Abstract

In this paper, we have characterized the apical and basolateral endocytic pathways of epithelial MDCK cells grown on filters. The three- dimensional organization of the endocytic compartments was analyzed by confocal microscopy after internalization of a fluorescent fluid-phase marker from either side of the cell layer. After 5 min of internalization, distinct sets of apical and basolateral early endosomes were observed lining the plasma membrane domain from which internalization had occurred. At later time points, the apical and the basolateral endocytic pathways were shown to converge in the perinuclear region. Mixing of two different fluorescent markers could be detected after their simultaneous internalization from opposite sides of the cell layer. The extent of the meeting was quantitated by measuring the amount of complex formed intracellularly between avidin internalized from the apical side and biotinylated horseradish peroxidase (HRP) from the basolateral side. After 15 min, 14% of the avidin marker was complexed with the biotinylated HRP and this value increased to 50% during a subsequent chase of 60 min in avidin-free medium. We also determined the kinetics of fluid internalization, recycling, transcytosis, and intracellular retention using HRP as a marker. Fluid was internalized with the same rates from either surface domain (1.2 x 10(-4) microns 3/min per microns 2 of surface area). However, significant differences were observed for each pathway in the amounts and kinetics of marker recycled and transcytosed. The content of apical early endosomes was primarily recycled and transcytosed (45% along Bach route after 1 h internalization), whereas delivery to late endocytic compartments was favored from the basolateral early endosome (77% after 1 h). Our results demonstrate that early apical and basolateral endosomes are functionally and topologically distinct, but that the endocytic pathways converge at later stages in the perinuclear region of the cell.

Full Text

The Full Text of this article is available as a PDF (5.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abrahamson D. R., Rodewald R. Evidence for the sorting of endocytic vesicle contents during the receptor-mediated transport of IgG across the newborn rat intestine. J Cell Biol. 1981 Oct;91(1):270–280. doi: 10.1083/jcb.91.1.270. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Adams C. J., Maurey K. M., Storrie B. Exocytosis of pinocytic contents by Chinese hamster ovary cells. J Cell Biol. 1982 Jun;93(3):632–637. doi: 10.1083/jcb.93.3.632. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Balcarova-Ständer J., Pfeiffer S. E., Fuller S. D., Simons K. Development of cell surface polarity in the epithelial Madin-Darby canine kidney (MDCK) cell line. EMBO J. 1984 Nov;3(11):2687–2694. doi: 10.1002/j.1460-2075.1984.tb02194.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Berod A., Hartman B. K., Pujol J. F. Importance of fixation in immunohistochemistry: use of formaldehyde solutions at variable pH for the localization of tyrosine hydroxylase. J Histochem Cytochem. 1981 Jul;29(7):844–850. doi: 10.1177/29.7.6167611. [DOI] [PubMed] [Google Scholar]
  5. Besterman J. M., Airhart J. A., Woodworth R. C., Low R. B. Exocytosis of pinocytosed fluid in cultured cells: kinetic evidence for rapid turnover and compartmentation. J Cell Biol. 1981 Dec;91(3 Pt 1):716–727. doi: 10.1083/jcb.91.3.716. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Braell W. A. Fusion between endocytic vesicles in a cell-free system. Proc Natl Acad Sci U S A. 1987 Mar;84(5):1137–1141. doi: 10.1073/pnas.84.5.1137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Brown D. Vesicle recycling and cell-specific function in kidney epithelial cells. Annu Rev Physiol. 1989;51:771–784. doi: 10.1146/annurev.ph.51.030189.004011. [DOI] [PubMed] [Google Scholar]
  8. Cain C. C., Sipe D. M., Murphy R. F. Regulation of endocytic pH by the Na+,K+-ATPase in living cells. Proc Natl Acad Sci U S A. 1989 Jan;86(2):544–548. doi: 10.1073/pnas.86.2.544. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Christensen E. I. Rapid membrane recycling in renal proximal tubule cells. Eur J Cell Biol. 1982 Nov;29(1):43–49. [PubMed] [Google Scholar]
  10. Fuchs R., Schmid S., Mellman I. A possible role for Na+,K+-ATPase in regulating ATP-dependent endosome acidification. Proc Natl Acad Sci U S A. 1989 Jan;86(2):539–543. doi: 10.1073/pnas.86.2.539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fuller S., von Bonsdorff C. H., Simons K. Vesicular stomatitis virus infects and matures only through the basolateral surface of the polarized epithelial cell line, MDCK. Cell. 1984 Aug;38(1):65–77. doi: 10.1016/0092-8674(84)90527-0. [DOI] [PubMed] [Google Scholar]
  12. Geuze H. J., Slot J. W., Strous G. J., Lodish H. F., Schwartz A. L. Intracellular site of asialoglycoprotein receptor-ligand uncoupling: double-label immunoelectron microscopy during receptor-mediated endocytosis. Cell. 1983 Jan;32(1):277–287. doi: 10.1016/0092-8674(83)90518-4. [DOI] [PubMed] [Google Scholar]
  13. Gonnella P. A., Neutra M. R. Membrane-bound and fluid-phase macromolecules enter separate prelysosomal compartments in absorptive cells of suckling rat ileum. J Cell Biol. 1984 Sep;99(3):909–917. doi: 10.1083/jcb.99.3.909. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Griffiths G., Hoflack B., Simons K., Mellman I., Kornfeld S. The mannose 6-phosphate receptor and the biogenesis of lysosomes. Cell. 1988 Feb 12;52(3):329–341. doi: 10.1016/s0092-8674(88)80026-6. [DOI] [PubMed] [Google Scholar]
  15. Gruenberg J., Griffiths G., Howell K. E. Characterization of the early endosome and putative endocytic carrier vesicles in vivo and with an assay of vesicle fusion in vitro. J Cell Biol. 1989 Apr;108(4):1301–1316. doi: 10.1083/jcb.108.4.1301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gumbiner B., Simons K. A functional assay for proteins involved in establishing an epithelial occluding barrier: identification of a uvomorulin-like polypeptide. J Cell Biol. 1986 Feb;102(2):457–468. doi: 10.1083/jcb.102.2.457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Gumbiner B. Structure, biochemistry, and assembly of epithelial tight junctions. Am J Physiol. 1987 Dec;253(6 Pt 1):C749–C758. doi: 10.1152/ajpcell.1987.253.6.C749. [DOI] [PubMed] [Google Scholar]
  18. Hatae T., Fujita M., Okuyama K. Study on the origin of apical tubules in ileal absorptive cells of suckling rats using concanavalin-A as a membrane-bound tracer. Cell Tissue Res. 1988 Mar;251(3):511–521. doi: 10.1007/BF00213998. [DOI] [PubMed] [Google Scholar]
  19. Herman B., Albertini D. F. A time-lapse video image intensification analysis of cytoplasmic organelle movements during endosome translocation. J Cell Biol. 1984 Feb;98(2):565–576. doi: 10.1083/jcb.98.2.565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Herzog V. Pathways of endocytosis in thyroid follicle cells. Int Rev Cytol. 1984;91:107–139. doi: 10.1016/s0074-7696(08)61315-7. [DOI] [PubMed] [Google Scholar]
  21. Langanger G., De Mey J., Adam H. 1,4-Diazobizyklo-[2,2,2]-Oktan (DABCO) verzögert das Ausbleichen von Immunfluoreszenzpräparaten. Mikroskopie. 1983 Sep;40(7-8):237–241. [PubMed] [Google Scholar]
  22. Lehner C. F., Kurer V., Eppenberger H. M., Nigg E. A. The nuclear lamin protein family in higher vertebrates. Identification of quantitatively minor lamin proteins by monoclonal antibodies. J Biol Chem. 1986 Oct 5;261(28):13293–13301. [PubMed] [Google Scholar]
  23. Mostov K. E., Simister N. E. Transcytosis. Cell. 1985 Dec;43(2 Pt 1):389–390. doi: 10.1016/0092-8674(85)90166-7. [DOI] [PubMed] [Google Scholar]
  24. Nielsen J. T., Nielsen S., Christensen E. I. Transtubular transport of proteins in rabbit proximal tubules. J Ultrastruct Res. 1985 Sep;92(3):133–145. doi: 10.1016/0889-1605(85)90041-2. [DOI] [PubMed] [Google Scholar]
  25. Oliver C. Endocytic pathways at the lateral and basal cell surfaces of exocrine acinar cells. J Cell Biol. 1982 Oct;95(1):154–161. doi: 10.1083/jcb.95.1.154. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Oliver C., Hand A. R. Uptake and fate of luminally administered horseradish peroxidase in resting and isoproterenol-stimulated rat parotid acinar cells. J Cell Biol. 1978 Jan;76(1):207–229. doi: 10.1083/jcb.76.1.207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Pastan I. H., Willingham M. C. Journey to the center of the cell: role of the receptosome. Science. 1981 Oct 30;214(4520):504–509. doi: 10.1126/science.6170111. [DOI] [PubMed] [Google Scholar]
  28. Richardson J. C., Scalera V., Simmons N. L. Identification of two strains of MDCK cells which resemble separate nephron tubule segments. Biochim Biophys Acta. 1981 Feb 18;673(1):26–36. [PubMed] [Google Scholar]
  29. Rodman J. S., Seidman L., Farquhar M. G. The membrane composition of coated pits, microvilli, endosomes, and lysosomes is distinctive in the rat kidney proximal tubule cell. J Cell Biol. 1986 Jan;102(1):77–87. doi: 10.1083/jcb.102.1.77. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Sargiacomo M., Lisanti M., Graeve L., Le Bivic A., Rodriguez-Boulan E. Integral and peripheral protein composition of the apical and basolateral membrane domains in MDCK cells. J Membr Biol. 1989 Mar;107(3):277–286. doi: 10.1007/BF01871942. [DOI] [PubMed] [Google Scholar]
  31. Simons K., Fuller S. D. Cell surface polarity in epithelia. Annu Rev Cell Biol. 1985;1:243–288. doi: 10.1146/annurev.cb.01.110185.001331. [DOI] [PubMed] [Google Scholar]
  32. Steinman R. M., Brodie S. E., Cohn Z. A. Membrane flow during pinocytosis. A stereologic analysis. J Cell Biol. 1976 Mar;68(3):665–687. doi: 10.1083/jcb.68.3.665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Stevenson B. R., Siliciano J. D., Mooseker M. S., Goodenough D. A. Identification of ZO-1: a high molecular weight polypeptide associated with the tight junction (zonula occludens) in a variety of epithelia. J Cell Biol. 1986 Sep;103(3):755–766. doi: 10.1083/jcb.103.3.755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Swanson J. A., Yirinec B. D., Silverstein S. C. Phorbol esters and horseradish peroxidase stimulate pinocytosis and redirect the flow of pinocytosed fluid in macrophages. J Cell Biol. 1985 Mar;100(3):851–859. doi: 10.1083/jcb.100.3.851. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Wall D. A., Wilson G., Hubbard A. L. The galactose-specific recognition system of mammalian liver: the route of ligand internalization in rat hepatocytes. Cell. 1980 Aug;21(1):79–93. doi: 10.1016/0092-8674(80)90116-6. [DOI] [PubMed] [Google Scholar]
  36. van Deurs B., Christensen E. I. Endocytosis in kidney proximal tubule cells and cultured fibroblasts: a review of the structural aspects of membrane recycling between the plasma membrane and endocytic vacuoles. Eur J Cell Biol. 1984 Jan;33(1):163–173. [PubMed] [Google Scholar]
  37. von Bonsdorff C. H., Fuller S. D., Simons K. Apical and basolateral endocytosis in Madin-Darby canine kidney (MDCK) cells grown on nitrocellulose filters. EMBO J. 1985 Nov;4(11):2781–2792. doi: 10.1002/j.1460-2075.1985.tb04004.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES