Abstract
Isolated purified plasma membrane domains from unstimulated human neutrophils were photoaffinity labeled with F-Met-Leu-Phe-N epsilon-(2- (p-azido-[125I]salicylamido)ethyl- 1,3'-dithiopropionyl)-Lys also referred to as FMLPL-SASD[125I]. Most of the photoaffinity-labeled N- formyl peptide receptors were found in light plasma membrane fraction (PM-L) which has been previously shown to be enriched in guanyl nucleotide binding proteins and the plasma membrane marker alkaline phosphatase (Jesaitis, A. J., G. M. Bokoch, J. O. Tolley, and R. A. Allen. 1988. J. Cell Biol. 107:921-928). Furthermore, the heavy plasma membrane fraction (PM-H), which is enriched in actin and fodrin, was depleted in receptors. Solubilization of PM-L and PM-H in divalent cation-free buffer containing octylglucoside and subsequent sedimentation at 180,000 g in detergent-containing sucrose gradients revealed two receptor forms. The major population, found in PM-L sedimented as a globular protein with an apparent sedimentation coefficient of 6-7S, while a minor fraction found in the PM-H fraction sedimented as a 4S particle. In addition, the 6-7S form could be converted to the 4S form by inclusion of guanosine 5'-O-(3- thiotriphosphate) (GTP gamma S) in the extraction buffer (ED50 = 10-30 nM). ATP was not effective at doses of up to 10 microM. In contrast, isolation and solubilization of receptors from desensitized cells (photoaffinity labeled after a 15 degrees C incubation with FMLPL- SASD[125I]) revealed that the majority of receptors (greater than 60- 90%), which are found in PM-H, sedimented as 4S particles. A minor fraction of receptors found in the PM-L sedimented as 6-7S species. The receptors in the PM-H fraction, however, were still capable of interacting with G-proteins, since addition of unlabeled PM-L membrane fraction as a G-protein source reconstituted a more rapidly sedimenting form showing sensitivity to GTP gamma S. These results suggest that receptors in unstimulated human neutrophils have a higher probability of interacting with G-proteins because they are in the light plasma membrane domain. The results also suggest that receptors that have been translocated to the heavy plasma membrane domain during the process of desensitization or response termination have a lower probability of interacting with G-protein. Since the latter receptors are still capable of forming G protein associations, then their lateral segregation would represent a mechanism of controlling of receptor G- protein interactions. This reorganization of the plasma membrane, therefore, may form the molecular basis for response termination or homologous desensitization in human neutrophils.
Full Text
The Full Text of this article is available as a PDF (1.2 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Allen R. A., Erickson R. W., Jesaitis A. J. Identification of a human neutrophil protein of Mr 24 000 that binds N-formyl peptides: co-sedimentation with specific granules. Biochim Biophys Acta. 1989 Apr 25;991(1):123–133. doi: 10.1016/0304-4165(89)90037-8. [DOI] [PubMed] [Google Scholar]
- Allen R. A., Jesaitis A. J., Sklar L. A., Cochrane C. G., Painter R. G. Physicochemical properties of the N-formyl peptide receptor on human neutrophils. J Biol Chem. 1986 Feb 5;261(4):1854–1857. [PubMed] [Google Scholar]
- Allen R. A., Tolley J. O., Jesaitis A. J. Preparation and properties of an improved photoaffinity ligand for the N-formyl peptide receptor. Biochim Biophys Acta. 1986 Jul 16;882(3):271–280. doi: 10.1016/0304-4165(86)90248-5. [DOI] [PubMed] [Google Scholar]
- Allen R. A., Traynor A. E., Omann G. M., Jesaitis A. J. The chemotactic peptide receptor. A model for future understanding of chemotactic disorders. Hematol Oncol Clin North Am. 1988 Mar;2(1):33–59. [PubMed] [Google Scholar]
- Bokoch G. M., Bickford K., Bohl B. P. Subcellular localization and quantitation of the major neutrophil pertussis toxin substrate, Gn. J Cell Biol. 1988 Jun;106(6):1927–1936. doi: 10.1083/jcb.106.6.1927. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bokoch G. M., Katada T., Northup J. K., Hewlett E. L., Gilman A. G. Identification of the predominant substrate for ADP-ribosylation by islet activating protein. J Biol Chem. 1983 Feb 25;258(4):2072–2075. [PubMed] [Google Scholar]
- Bokoch G. M., Sklar L. A., Smolen J. E. Guanine nucleotide regulatory proteins as transducers of receptor-stimulated neutrophil activation. Int J Tissue React. 1987;9(4):285–293. [PubMed] [Google Scholar]
- Boxer G. J., Curnutte J. T., Boxer L. A. Polymorphonuclear leukocyte function. Hosp Pract (Off Ed) 1985 Mar 15;20(3):69-73, 77, 80 passim. doi: 10.1080/21548331.1985.11703014. [DOI] [PubMed] [Google Scholar]
- Gilman A. G. G proteins: transducers of receptor-generated signals. Annu Rev Biochem. 1987;56:615–649. doi: 10.1146/annurev.bi.56.070187.003151. [DOI] [PubMed] [Google Scholar]
- Jesaitis A. J., Allen R. A. Activation of the neutrophil respiratory burst by chemoattractants: regulation of the N-formyl peptide receptor in the plasma membrane. J Bioenerg Biomembr. 1988 Dec;20(6):679–707. doi: 10.1007/BF00762548. [DOI] [PubMed] [Google Scholar]
- Jesaitis A. J., Bokoch G. M., Tolley J. O., Allen R. A. Lateral segregation of neutrophil chemotactic receptors into actin- and fodrin-rich plasma membrane microdomains depleted in guanyl nucleotide regulatory proteins. J Cell Biol. 1988 Sep;107(3):921–928. doi: 10.1083/jcb.107.3.921. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jesaitis A. J., Naemura J. R., Painter R. G., Sklar L. A., Cochrane C. G. Intracellular localization of N-formyl chemotactic receptor and Mg2+ dependent ATPase in human granulocytes. Biochim Biophys Acta. 1982 Dec 17;719(3):556–568. doi: 10.1016/0304-4165(82)90246-x. [DOI] [PubMed] [Google Scholar]
- Kassis S., Fishman P. H. Functional alteration of the beta-adrenergic receptor during desensitization of mammalian adenylate cyclase by beta-agonists. Proc Natl Acad Sci U S A. 1984 Nov;81(21):6686–6690. doi: 10.1073/pnas.81.21.6686. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Klein P., Knox B., Borleis J., Devreotes P. Purification of the surface cAMP receptor in Dictyostelium. J Biol Chem. 1987 Jan 5;262(1):352–357. [PubMed] [Google Scholar]
- Painter R. G., Zahler-Bentz K., Dukes R. E. Regulation of the affinity state of the N-formylated peptide receptor of neutrophils: role of guanine nucleotide-binding proteins and the cytoskeleton. J Cell Biol. 1987 Dec;105(6 Pt 2):2959–2971. doi: 10.1083/jcb.105.6.2959. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Parkos C. A., Allen R. A., Cochrane C. G., Jesaitis A. J. Purified cytochrome b from human granulocyte plasma membrane is comprised of two polypeptides with relative molecular weights of 91,000 and 22,000. J Clin Invest. 1987 Sep;80(3):732–742. doi: 10.1172/JCI113128. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sibley D. R., Benovic J. L., Caron M. G., Lefkowitz R. J. Regulation of transmembrane signaling by receptor phosphorylation. Cell. 1987 Mar 27;48(6):913–922. doi: 10.1016/0092-8674(87)90700-8. [DOI] [PubMed] [Google Scholar]
- Sibley D. R., Lefkowitz R. J. Molecular mechanisms of receptor desensitization using the beta-adrenergic receptor-coupled adenylate cyclase system as a model. Nature. 1985 Sep 12;317(6033):124–129. doi: 10.1038/317124a0. [DOI] [PubMed] [Google Scholar]
- Sklar L. A., Bokoch G. M., Button D., Smolen J. E. Regulation of ligand-receptor dynamics by guanine nucleotides. Real-time analysis of interconverting states for the neutrophil formyl peptide receptor. J Biol Chem. 1987 Jan 5;262(1):135–139. [PubMed] [Google Scholar]
- Sklar L. A., Finney D. A., Oades Z. G., Jesaitis A. J., Painter R. G., Cochrane C. G. The dynamics of ligand-receptor interactions. Real-time analyses of association, dissociation, and internalization of an N-formyl peptide and its receptors on the human neutrophil. J Biol Chem. 1984 May 10;259(9):5661–5669. [PubMed] [Google Scholar]
- Sklar L. A., Jesaitis A. J., Painter R. G. The neutrophil N-formyl peptide receptor: dynamics of ligand-receptor interactions and their relationship to cellular responses. Contemp Top Immunobiol. 1984;14:29–82. doi: 10.1007/978-1-4757-4862-8_2. [DOI] [PubMed] [Google Scholar]
- Wilden U., Hall S. W., Kühn H. Phosphodiesterase activation by photoexcited rhodopsin is quenched when rhodopsin is phosphorylated and binds the intrinsic 48-kDa protein of rod outer segments. Proc Natl Acad Sci U S A. 1986 Mar;83(5):1174–1178. doi: 10.1073/pnas.83.5.1174. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilden U., Kühn H. Light-dependent phosphorylation of rhodopsin: number of phosphorylation sites. Biochemistry. 1982 Jun 8;21(12):3014–3022. doi: 10.1021/bi00541a032. [DOI] [PubMed] [Google Scholar]