Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1990 Jan 1;110(1):53–62. doi: 10.1083/jcb.110.1.53

Elastic filaments in skeletal muscle revealed by selective removal of thin filaments with plasma gelsolin

PMCID: PMC2115976  PMID: 2153147

Abstract

Muscle needs an elastic framework to maintain its mechanical stability. Removal of thin filaments in rabbit skeletal muscle with plasma gelsolin has revealed the essential features of elastic filaments. The selective removal of thin filaments was confirmed by staining with phalloidin-rhodamine for fluorescence microscopy, examination of arrowhead formation with myosin subfragment 1 by electron microscopy, and analysis by SDS-PAGE. Thin section electron microscopy revealed the elastic fine filaments (approximately 4 nm in diameter) connecting thick filaments and the Z line. After removal of thin filaments, both rigor stiffness and active tension generation were lost, but the resting tension remained. These observations indicate that the thin filament-free fibers maintain a framework composed of the serial connections of thick filaments, the elastic filaments, and the Z line, which gives passive elasticity to the contractile system of skeletal muscle. The resting tension that remained in the thin filament-free fibers was decreased by mild trypsin treatment. The only protein component that was digested in parallel with the decrease in the resting tension and the disappearance of the elastic filaments was alpha-connectin (also called titin 1), which was transformed from the alpha to the beta form (from titin 1 to 2, respectively). Thus, we conclude that the main protein component of the elastic filaments is alpha-connectin (titin 1).

Full Text

The Full Text of this article is available as a PDF (3.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bryan J., Hwo S. Definition of an N-terminal actin-binding domain and a C-terminal Ca2+ regulatory domain in human brevin. J Cell Biol. 1986 Apr;102(4):1439–1446. doi: 10.1083/jcb.102.4.1439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chaponnier C., Patebex P., Gabbiani G. Human plasma actin-depolymerizing factor. Purification, biological activity and localization in leukocytes and platelets. Eur J Biochem. 1985 Jan 15;146(2):267–276. doi: 10.1111/j.1432-1033.1985.tb08649.x. [DOI] [PubMed] [Google Scholar]
  3. Cooper J. A., Bryan J., Schwab B., 3rd, Frieden C., Loftus D. J., Elson E. L. Microinjection of gelsolin into living cells. J Cell Biol. 1987 Mar;104(3):491–501. doi: 10.1083/jcb.104.3.491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Fürst D. O., Osborn M., Nave R., Weber K. The organization of titin filaments in the half-sarcomere revealed by monoclonal antibodies in immunoelectron microscopy: a map of ten nonrepetitive epitopes starting at the Z line extends close to the M line. J Cell Biol. 1988 May;106(5):1563–1572. doi: 10.1083/jcb.106.5.1563. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. HUXLEY A. F., PEACHEY L. D. The maximum length for contraction in vertebrate straiated muscle. J Physiol. 1961 Apr;156:150–165. doi: 10.1113/jphysiol.1961.sp006665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Harris H. E., Weeds A. G. Plasma gelsolin caps and severs actin filaments. FEBS Lett. 1984 Nov 19;177(2):184–188. doi: 10.1016/0014-5793(84)81280-6. [DOI] [PubMed] [Google Scholar]
  7. Higuchi H. Lattice swelling with the selective digestion of elastic components in single-skinned fibers of frog muscle. Biophys J. 1987 Jul;52(1):29–32. doi: 10.1016/S0006-3495(87)83185-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Higuchi H., Umazume Y. Lattice shrinkage with increasing resting tension in stretched, single skinned fibers of frog muscle. Biophys J. 1986 Sep;50(3):385–389. doi: 10.1016/S0006-3495(86)83474-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Higuchi H., Umazume Y. Localization of the parallel elastic components in frog skinned muscle fibers studied by the dissociation of the A- and I-bands. Biophys J. 1985 Jul;48(1):137–147. doi: 10.1016/S0006-3495(85)83767-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Horiuti K., Higuchi H., Umazume Y., Konishi M., Okazaki O., Kurihara S. Mechanism of action of 2, 3-butanedione 2-monoxime on contraction of frog skeletal muscle fibres. J Muscle Res Cell Motil. 1988 Apr;9(2):156–164. doi: 10.1007/BF01773737. [DOI] [PubMed] [Google Scholar]
  11. Horowits R., Kempner E. S., Bisher M. E., Podolsky R. J. A physiological role for titin and nebulin in skeletal muscle. Nature. 1986 Sep 11;323(6084):160–164. doi: 10.1038/323160a0. [DOI] [PubMed] [Google Scholar]
  12. Horowits R., Podolsky R. J. The positional stability of thick filaments in activated skeletal muscle depends on sarcomere length: evidence for the role of titin filaments. J Cell Biol. 1987 Nov;105(5):2217–2223. doi: 10.1083/jcb.105.5.2217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Huxley H. E., Brown W. The low-angle x-ray diagram of vertebrate striated muscle and its behaviour during contraction and rigor. J Mol Biol. 1967 Dec 14;30(2):383–434. doi: 10.1016/s0022-2836(67)80046-9. [DOI] [PubMed] [Google Scholar]
  14. Ishiwata S., Funatsu T. Does actin bind to the ends of thin filaments in skeletal muscle? J Cell Biol. 1985 Jan;100(1):282–291. doi: 10.1083/jcb.100.1.282. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. KLUG A., BERGER J. E. AN OPTICAL METHOD FOR THE ANALYSIS OF PERIODICITIES IN ELECTRON MICROGRAPHS, AND SOME OBSERVATIONS ON THE MECHANISM OF NEGATIVE STAINING. J Mol Biol. 1964 Dec;10:565–569. doi: 10.1016/s0022-2836(64)80081-4. [DOI] [PubMed] [Google Scholar]
  16. Locker R. H., Leet N. G. Histology of highly-stretched beef muscle. I. The fine structure of grossly stretched single fibers. J Ultrastruct Res. 1975 Jul;52(1):64–75. doi: 10.1016/s0022-5320(75)80022-0. [DOI] [PubMed] [Google Scholar]
  17. Locker R. H., Wild D. J. The N-lines of skeletal muscle. J Ultrastruct Res. 1984 Sep;88(3):207–222. doi: 10.1016/s0022-5320(84)90119-9. [DOI] [PubMed] [Google Scholar]
  18. Luther P. K., Munro P. M., Squire J. M. Three-dimensional structure of the vertebrate muscle A-band. III. M-region structure and myosin filament symmetry. J Mol Biol. 1981 Oct 5;151(4):703–730. doi: 10.1016/0022-2836(81)90430-7. [DOI] [PubMed] [Google Scholar]
  19. Magid A., Law D. J. Myofibrils bear most of the resting tension in frog skeletal muscle. Science. 1985 Dec 13;230(4731):1280–1282. doi: 10.1126/science.4071053. [DOI] [PubMed] [Google Scholar]
  20. Maruyama K. Connectin, an elastic filamentous protein of striated muscle. Int Rev Cytol. 1986;104:81–114. doi: 10.1016/s0074-7696(08)61924-5. [DOI] [PubMed] [Google Scholar]
  21. Maruyama K., Yoshioka T., Higuchi H., Ohashi K., Kimura S., Natori R. Connectin filaments link thick filaments and Z lines in frog skeletal muscle as revealed by immunoelectron microscopy. J Cell Biol. 1985 Dec;101(6):2167–2172. doi: 10.1083/jcb.101.6.2167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. SJOSTRAND F. S. The connections between A- and I-band filaments in striated frog muscle. J Ultrastruct Res. 1962 Oct;7:225–246. doi: 10.1016/s0022-5320(62)90020-5. [DOI] [PubMed] [Google Scholar]
  23. Sanger J. M., Mittal B., Wegner A., Jockusch B. M., Sanger J. W. Differential response of stress fibers and myofibrils to gelsolin. Eur J Cell Biol. 1987 Jun;43(3):421–428. [PubMed] [Google Scholar]
  24. Somerville L. L., Wang K. The ultrasensitive silver "protein" stain also detects nanograms of nucleic acids. Biochem Biophys Res Commun. 1981 Sep 16;102(1):53–58. doi: 10.1016/0006-291x(81)91487-x. [DOI] [PubMed] [Google Scholar]
  25. Trinick J. A. End-filaments: a new structural element of vertebrate skeletal muscle thick filaments. J Mol Biol. 1981 Sep 15;151(2):309–314. doi: 10.1016/0022-2836(81)90517-9. [DOI] [PubMed] [Google Scholar]
  26. Trombitás K., Baatsen P. H., Pollack G. H. I-bands of striated muscle contain lateral struts. J Ultrastruct Mol Struct Res. 1988 Jul;100(1):13–30. doi: 10.1016/0889-1605(88)90055-9. [DOI] [PubMed] [Google Scholar]
  27. Wang K. Sarcomere-associated cytoskeletal lattices in striated muscle. Review and hypothesis. Cell Muscle Motil. 1985;6:315–369. doi: 10.1007/978-1-4757-4723-2_10. [DOI] [PubMed] [Google Scholar]
  28. Wang K., Wright J. Architecture of the sarcomere matrix of skeletal muscle: immunoelectron microscopic evidence that suggests a set of parallel inextensible nebulin filaments anchored at the Z line. J Cell Biol. 1988 Dec;107(6 Pt 1):2199–2212. doi: 10.1083/jcb.107.6.2199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Wang S. M., Greaser M. L. Immunocytochemical studies using a monoclonal antibody to bovine cardiac titin on intact and extracted myofibrils. J Muscle Res Cell Motil. 1985 Jun;6(3):293–312. doi: 10.1007/BF00713171. [DOI] [PubMed] [Google Scholar]
  30. Weeds A. G., Pope B. Studies on the chymotryptic digestion of myosin. Effects of divalent cations on proteolytic susceptibility. J Mol Biol. 1977 Apr;111(2):129–157. doi: 10.1016/s0022-2836(77)80119-8. [DOI] [PubMed] [Google Scholar]
  31. Whiting A., Wardale J., Trinick J. Does titin regulate the length of muscle thick filaments? J Mol Biol. 1989 Jan 5;205(1):263–268. doi: 10.1016/0022-2836(89)90381-1. [DOI] [PubMed] [Google Scholar]
  32. Wilson P., Fuller E., Forer A. Irradiations of rabbit myofibrils with an ultraviolet microbeam. II. Phalloidin protects actin in solution but not in myofibrils from depolymerization by ultraviolet light. Biochem Cell Biol. 1987 Apr;65(4):376–385. doi: 10.1139/o87-047. [DOI] [PubMed] [Google Scholar]
  33. Wulf E., Deboben A., Bautz F. A., Faulstich H., Wieland T. Fluorescent phallotoxin, a tool for the visualization of cellular actin. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4498–4502. doi: 10.1073/pnas.76.9.4498. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Yamaguchi M., Izumimoto M., Robson R. M., Stromer M. H. Fine structure of wide and narrow vertebrate muscle Z-lines. A proposed model and computer simulation of Z-line architecture. J Mol Biol. 1985 Aug 20;184(4):621–643. doi: 10.1016/0022-2836(85)90308-0. [DOI] [PubMed] [Google Scholar]
  35. Yanagida T., Arata T., Oosawa F. Sliding distance of actin filament induced by a myosin crossbridge during one ATP hydrolysis cycle. Nature. 1985 Jul 25;316(6026):366–369. doi: 10.1038/316366a0. [DOI] [PubMed] [Google Scholar]
  36. Yin H. L., Stossel T. P. Control of cytoplasmic actin gel-sol transformation by gelsolin, a calcium-dependent regulatory protein. Nature. 1979 Oct 18;281(5732):583–586. doi: 10.1038/281583a0. [DOI] [PubMed] [Google Scholar]
  37. Zimmer D. B., Goldstein M. A. DNase I interactions with filaments of skeletal muscles. J Muscle Res Cell Motil. 1987 Feb;8(1):30–38. doi: 10.1007/BF01767262. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES