Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1990 Jan 1;110(1):123–132. doi: 10.1083/jcb.110.1.123

An immortalized osteogenic cell line derived from mouse teratocarcinoma is able to mineralize in vivo and in vitro

PMCID: PMC2115979  PMID: 2153146

Abstract

The hybrid plasmid pK4 containing the early genes of the simian virus SV-40, under the control of the adenovirus type 5 E1a promoter, was introduced into the multipotent embryonal carcinoma (EC) 1003. Expression of the SV-40 oncogenes was observed at the EC cell stage, and this allowed the derivation of immortalized cells corresponding to early stages of differentiation. Among the immortalized mesodermal derivatives obtained, one clone, C1, is committed to the osteogenic pathway. C1 cells have a stable phenotype, synthesize type I collagen, and express alkaline phosphatase activity. Although immortalized and expressing the SV-40 T antigen, the cells continue to be able to differentiate in vivo and in vitro. In vivo, after injection into syngeneic mice, they produce osteosarcomas. In vitro, the cells form nodules and deposit a collagenous matrix that mineralizes, going to hydroxyapatite crystal formation, in the presence of beta- glycerophosphate. This clonal cell line, which originates from an embryonal carcinoma, therefore differentiates into osteogenic cells in vivo and in vitro. This immortalized cell line will be useful in identifying specific molecular markers of the osteogenic pathway, to investigate gene regulation during osteogenesis and to study the ontogeny of osteoblasts.

Full Text

The Full Text of this article is available as a PDF (3.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aubin J. E., Heersche J. N., Merrilees M. J., Sodek J. Isolation of bone cell clones with differences in growth, hormone responses, and extracellular matrix production. J Cell Biol. 1982 Feb;92(2):452–461. doi: 10.1083/jcb.92.2.452. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bellows C. G., Aubin J. E., Heersche J. N., Antosz M. E. Mineralized bone nodules formed in vitro from enzymatically released rat calvaria cell populations. Calcif Tissue Int. 1986 Mar;38(3):143–154. doi: 10.1007/BF02556874. [DOI] [PubMed] [Google Scholar]
  3. Berstine E. G., Hooper M. L., Grandchamp S., Ephrussi B. Alkaline phosphatase activity in mouse teratoma. Proc Natl Acad Sci U S A. 1973 Dec;70(12):3899–3903. doi: 10.1073/pnas.70.12.3899. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bianco P., Ballanti P., Bonucci E. Tartrate-resistant acid phosphatase activity in rat osteoblasts and osteocytes. Calcif Tissue Int. 1988 Sep;43(3):167–171. doi: 10.1007/BF02571315. [DOI] [PubMed] [Google Scholar]
  5. Boccara M., Kelly F. Etude de la sensibilité au virus du polyome et à SV40 de plusieurs lignées cellulaires de tératocarcinome. Ann Microbiol (Paris) 1978 Feb-Mar;129(2):227–238. [PubMed] [Google Scholar]
  6. Darmon M., Buc-Caron M. H., Paulin D., Jacob F. Control by the extracellular environment of differentiation pathways in 1003 embryonal carcinoma cells: study at the level of specific intermediate filaments. EMBO J. 1982;1(8):901–906. doi: 10.1002/j.1460-2075.1982.tb01269.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ecarot-Charrier B., Glorieux F. H., van der Rest M., Pereira G. Osteoblasts isolated from mouse calvaria initiate matrix mineralization in culture. J Cell Biol. 1983 Mar;96(3):639–643. doi: 10.1083/jcb.96.3.639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Forrest S. M., Ng K. W., Findlay D. M., Michelangeli V. P., Livesey S. A., Partridge N. C., Zajac J. D., Martin T. J. Characterization of an osteoblast-like clonal cell line which responds to both parathyroid hormone and calcitonin. Calcif Tissue Int. 1985 Jan;37(1):51–56. doi: 10.1007/BF02557679. [DOI] [PubMed] [Google Scholar]
  9. Friedenstein A. J. Precursor cells of mechanocytes. Int Rev Cytol. 1976;47:327–359. doi: 10.1016/s0074-7696(08)60092-3. [DOI] [PubMed] [Google Scholar]
  10. Gerstenfeld L. C., Chipman S. D., Kelly C. M., Hodgens K. J., Lee D. D., Landis W. J. Collagen expression, ultrastructural assembly, and mineralization in cultures of chicken embryo osteoblasts. J Cell Biol. 1988 Mar;106(3):979–989. doi: 10.1083/jcb.106.3.979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Goldstein D. J., Rogers C. E., Harris H. Expression of alkaline phosphatase loci in mammalian tissues. Proc Natl Acad Sci U S A. 1980 May;77(5):2857–2860. doi: 10.1073/pnas.77.5.2857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Grigoriadis A. E., Heersche J. N., Aubin J. E. Differentiation of muscle, fat, cartilage, and bone from progenitor cells present in a bone-derived clonal cell population: effect of dexamethasone. J Cell Biol. 1988 Jun;106(6):2139–2151. doi: 10.1083/jcb.106.6.2139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Grimaud J. A., Druguet M., Peyrol S., Chevalier O., Herbage D., El Badrawy N. Collagen immunotyping in human liver: light and electron microscope study. J Histochem Cytochem. 1980 Nov;28(11):1145–1156. doi: 10.1177/28.11.7000887. [DOI] [PubMed] [Google Scholar]
  14. Heath J. K., Rodan S. B., Yoon K., Rodan G. A. Rat calvarial cell lines immortalized with SV-40 large T antigen: constitutive and retinoic acid-inducible expression of osteoblastic features. Endocrinology. 1989 Jun;124(6):3060–3068. doi: 10.1210/endo-124-6-3060. [DOI] [PubMed] [Google Scholar]
  15. Hott M., Marie P. J. Glycol methacrylate as an embedding medium for bone. Stain Technol. 1987 Jan;62(1):51–57. doi: 10.3109/10520298709107965. [DOI] [PubMed] [Google Scholar]
  16. Imai Y., Rodan S. B., Rodan G. A. Effects of retinoic acid on alkaline phosphatase messenger ribonucleic acid, catecholamine receptors, and G proteins in ROS 17/2.8 cells. Endocrinology. 1988 Feb;122(2):456–463. doi: 10.1210/endo-122-2-456. [DOI] [PubMed] [Google Scholar]
  17. Ingleton P. M., Gaitens P. V., Coulton L. A., Russell R. G. An ultrastructural study of alkaline phosphatase in a transplantable rat osteogenic sarcoma. Metab Bone Dis Relat Res. 1983;5(1):23–31. doi: 10.1016/0221-8747(83)90047-4. [DOI] [PubMed] [Google Scholar]
  18. Kellermann O., Buc-Caron M. H., Gaillard J. Immortalization of precursors of endodermal, neuroectodermal and mesodermal lineages, following the introduction of the simian virus (SV40) early region into F9 cells. Differentiation. 1987;35(3):197–205. doi: 10.1111/j.1432-0436.1987.tb00169.x. [DOI] [PubMed] [Google Scholar]
  19. Kellermann O., Kelly F. Immortalization of early embryonic cell derivatives after the transfer of the early region of simian virus 40 into F9 teratocarcinoma cells. Differentiation. 1986;32(1):74–81. doi: 10.1111/j.1432-0436.1986.tb00558.x. [DOI] [PubMed] [Google Scholar]
  20. Knowles B. B., Pan S., Solter D., Linnenbach A., Croce C., Huebner K. Expression of H-2, laminin and SV40 T and TASA on differentiation of transformed murine teratocarcinoma cells. Nature. 1980 Dec 11;288(5791):615–618. doi: 10.1038/288615a0. [DOI] [PubMed] [Google Scholar]
  21. Kream B. E., Rowe D., Smith M. D., Maher V., Majeska R. Hormonal regulation of collagen synthesis in a clonal rat osteosarcoma cell line. Endocrinology. 1986 Nov;119(5):1922–1928. doi: 10.1210/endo-119-5-1922. [DOI] [PubMed] [Google Scholar]
  22. Levine A. M., Rosenberg S. A. Alkaline phosphatase levels in osteosarcoma tissue are related to prognosis. Cancer. 1979 Dec;44(6):2291–2293. doi: 10.1002/1097-0142(197912)44:6<2291::aid-cncr2820440643>3.0.co;2-s. [DOI] [PubMed] [Google Scholar]
  23. Lomri A., Marie P. J., Tran P. V., Hott M. Characterization of endosteal osteoblastic cells isolated from mouse caudal vertebrae. Bone. 1988;9(3):165–175. doi: 10.1016/8756-3282(88)90006-3. [DOI] [PubMed] [Google Scholar]
  24. Majeska R. J., Rodan G. A. The effect of 1,25(OH)2D3 on alkaline phosphatase in osteoblastic osteosarcoma cells. J Biol Chem. 1982 Apr 10;257(7):3362–3365. [PubMed] [Google Scholar]
  25. Majeska R. J., Rodan S. B., Rodan G. A. Parathyroid hormone-responsive clonal cell lines from rat osteosarcoma. Endocrinology. 1980 Nov;107(5):1494–1503. doi: 10.1210/endo-107-5-1494. [DOI] [PubMed] [Google Scholar]
  26. McBurney M. W. Clonal lines of teratocarcinoma cells in vitro: differentiation and cytogenetic characteristics. J Cell Physiol. 1976 Nov;89(3):441–455. doi: 10.1002/jcp.1040890310. [DOI] [PubMed] [Google Scholar]
  27. Montano X., Lane D. P. Monoclonal antibody to simian virus 40 small t. J Virol. 1984 Sep;51(3):760–767. doi: 10.1128/jvi.51.3.760-767.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Montano X., Lane D. P. The adenovirus Ela gene induces differentiation of F9 teratocarcinoma cells. Mol Cell Biol. 1987 May;7(5):1782–1790. doi: 10.1128/mcb.7.5.1782. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Nefussi J. R., Boy-Lefevre M. L., Boulekbache H., Forest N. Mineralization in vitro of matrix formed by osteoblasts isolated by collagenase digestion. Differentiation. 1985;29(2):160–168. doi: 10.1111/j.1432-0436.1985.tb00310.x. [DOI] [PubMed] [Google Scholar]
  30. Nicolas J. F., Gaillard J., Jakob H., Jacob F. Bone-forming cell line derived from embryonal carcinoma cells. Nature. 1980 Aug 14;286(5774):716–718. doi: 10.1038/286716a0. [DOI] [PubMed] [Google Scholar]
  31. Nishimoto S. K., Stryker W. F., Nimni M. E. Calcification of osteoblastlike rat osteosarcoma cells in agarose suspension cultures. Calcif Tissue Int. 1987 Nov;41(5):274–280. doi: 10.1007/BF02555229. [DOI] [PubMed] [Google Scholar]
  32. Nutt E., Dunwiddie C., Jacobs J. W., Simpson E. Identification of novel proteins synthesized in bone cells by antibody screening of a cDNA expression library. Biochem Biophys Res Commun. 1988 Feb 29;151(1):382–387. doi: 10.1016/0006-291x(88)90604-3. [DOI] [PubMed] [Google Scholar]
  33. Petkovich P. M., Heersche J. N., Tinker D. O., Jones G. Retinoic acid stimulates 1,25-dihydroxyvitamin D3 binding in rat osteosarcoma cells. J Biol Chem. 1984 Jul 10;259(13):8274–8280. [PubMed] [Google Scholar]
  34. Segal S., Levine A. J., Khoury G. Evidence for non-spliced SV40 RNA in undifferentiated murine teratocarcinoma stem cells. Nature. 1979 Jul 26;280(5720):335–338. doi: 10.1038/280335a0. [DOI] [PubMed] [Google Scholar]
  35. Shteyer A., Gazit D., Passi-Even L., Bab I., Majeska R., Gronowicz G., Lurie A., Rodan G. Formation of calcifying matrix by osteosarcoma cells in diffusion chambers in vivo. Calcif Tissue Int. 1986 Jul;39(1):49–54. doi: 10.1007/BF02555740. [DOI] [PubMed] [Google Scholar]
  36. Silbermann M., Schmidt J., Livne E., von der Mark K., Erfle V. In vitro induction of osteosarcomalike lesion by transformation of differentiating skeletal precursor cells with FBR murine osteosarcoma virus. Calcif Tissue Int. 1987 Oct;41(4):208–217. doi: 10.1007/BF02555240. [DOI] [PubMed] [Google Scholar]
  37. Sudo H., Kodama H. A., Amagai Y., Yamamoto S., Kasai S. In vitro differentiation and calcification in a new clonal osteogenic cell line derived from newborn mouse calvaria. J Cell Biol. 1983 Jan;96(1):191–198. doi: 10.1083/jcb.96.1.191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Williams D. C., Boder G. B., Toomey R. E., Paul D. C., Hillman C. C., Jr, King K. L., Van Frank R. M., Johnston C. C., Jr Mineralization and metabolic response in serially passaged adult rat bone cells. Calcif Tissue Int. 1980;30(3):233–246. doi: 10.1007/BF02408633. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES