Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1990 Jan 1;110(1):219–227. doi: 10.1083/jcb.110.1.219

Characterization of the collagen in the hexagonal lattice of Descemet's membrane: its relation to type VIII collagen

PMCID: PMC2115983  PMID: 2104858

Abstract

To investigate the nature of the hexagonal lattice structure in Descemet's membrane, monoclonal antibodies were raised against a homogenate of bovine Descemet's membranes. They were screened by immunofluorescence microscopy to obtain antibodies that label Descement's membrane. Some monoclonal antibodies labeled both Descemet's membrane and fine filaments within the stroma. In electron microscopy, with immunogold labeling on a critical point dried specimen, the antibodies labeled the hexagonal lattices and long- spacing structures produced by the bovine corneal endothelial cells in culture; 6A2 antibodies labeled the nodes of the lattice and 9H3 antibodies labeled the sides of the lattice. These antibodies also labeled the hexagonal lattice of Descemet's membrane in situ in ultrathin frozen sectioning. In immunofluorescence, these antibodies stained the sclera, choroid, and optic nerve sheath and its septum. They also labeled the dura mater of the spinal cord, and the perichondrium of the tracheal cartilage. In immunoblotting, the antibodies recognized 64-kD collagenous peptides both in tissue culture and in Descemet's membrane in vivo. They also recognized 50-kD pepsin- resistant fragments from Descemet's membranes that are related to type VIII collagen. However, they did not react either in immunoblotting or in immunoprecipitation with medium of subconfluent cultures from which type VIII collagen had been obtained. The results are discussed with reference to the nature of type VIII collagen, which is currently under dispute. This lattice collagen may be a member of a novel class of long- spacing fibrils.

Full Text

The Full Text of this article is available as a PDF (3.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alitalo K., Bornstein P., Vaheri A., Sage H. Biosynthesis of an unusual collagen type by human astrocytoma cells in vitro. J Biol Chem. 1983 Feb 25;258(4):2653–2661. [PubMed] [Google Scholar]
  2. Benya P. D. EC collagen: biosynthesis by corneal endothelial cells and separation from type IV without pepsin treatment or denaturation. Ren Physiol. 1980;3(1-6):30–35. doi: 10.1159/000172738. [DOI] [PubMed] [Google Scholar]
  3. Benya P. D., Padilla S. R. Isolation and characterization of type VIII collagen synthesized by cultured rabbit corneal endothelial cells. A conventional structure replaces the interrupted-helix model. J Biol Chem. 1986 Mar 25;261(9):4160–4169. [PubMed] [Google Scholar]
  4. Billings-Gagliardi S., Pockwinse S. M., Schneider G. B. Morphological changes in isolated lymphocytes during preparation for SEM: freeze drying versus critical-point drying. Am J Anat. 1978 Jul;152(3):383–389. doi: 10.1002/aja.1001520308. [DOI] [PubMed] [Google Scholar]
  5. Blake M. S., Johnston K. H., Russell-Jones G. J., Gotschlich E. C. A rapid, sensitive method for detection of alkaline phosphatase-conjugated anti-antibody on Western blots. Anal Biochem. 1984 Jan;136(1):175–179. doi: 10.1016/0003-2697(84)90320-8. [DOI] [PubMed] [Google Scholar]
  6. Bruns R. R. Beaded filaments and long-spacing fibrils: relation to type VI collagen. J Ultrastruct Res. 1984 Nov;89(2):136–145. doi: 10.1016/s0022-5320(84)80010-6. [DOI] [PubMed] [Google Scholar]
  7. Bruns R. R., Press W., Engvall E., Timpl R., Gross J. Type VI collagen in extracellular, 100-nm periodic filaments and fibrils: identification by immunoelectron microscopy. J Cell Biol. 1986 Aug;103(2):393–404. doi: 10.1083/jcb.103.2.393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Burgeson R. E. New collagens, new concepts. Annu Rev Cell Biol. 1988;4:551–577. doi: 10.1146/annurev.cb.04.110188.003003. [DOI] [PubMed] [Google Scholar]
  9. Carlson E. C., Meezan E., Brendel K., Kenney M. C. Ultrastructural analyses of control and enzyme-treated isolated renal basement membranes. Anat Rec. 1981 Aug;200(4):421–436. doi: 10.1002/ar.1092000405. [DOI] [PubMed] [Google Scholar]
  10. Coudrier E., Reggio H., Louvard D. Characterization of an integral membrane glycoprotein associated with the microfilaments of pig intestinal microvilli. EMBO J. 1983;2(3):469–475. doi: 10.1002/j.1460-2075.1983.tb01446.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Edwards R. P. Long-spacing collagen in skin biopsies from patients with lepromatous leprosy. Br J Dermatol. 1975 Aug;93(2):175–182. doi: 10.1111/j.1365-2133.1975.tb06737.x. [DOI] [PubMed] [Google Scholar]
  12. Fisher E. R., Vuzevski V. D. Cytogenesis of schwannoma (neurilemoma), neurofibroma, dermatofibroma, and dermatofibrosarcoma as revealed by electron microscopy. Am J Clin Pathol. 1968 Feb;49(2):141–154. doi: 10.1093/ajcp/49.2.141. [DOI] [PubMed] [Google Scholar]
  13. Friedmann I., Cawthorne T., Bird E. S. Broad-banded striated bodies in the sensory epithelium of the human macula and in neurinoma. Nature. 1965 Jul 10;207(993):171–174. doi: 10.1038/207171a0. [DOI] [PubMed] [Google Scholar]
  14. Galfrè G., Milstein C. Preparation of monoclonal antibodies: strategies and procedures. Methods Enzymol. 1981;73(Pt B):3–46. doi: 10.1016/0076-6879(81)73054-4. [DOI] [PubMed] [Google Scholar]
  15. Hendrix M. J., Hay E. D., von der Mark K., Linsenmayer T. F. Immunohistochemical localization of collagen types I and II in the developing chick cornea and tibia by electron microscopy. Invest Ophthalmol Vis Sci. 1982 Mar;22(3):359–375. [PubMed] [Google Scholar]
  16. JAKUS M. A. Studies on the cornea. II. The fine structure of Descement's membrane. J Biophys Biochem Cytol. 1956 Jul 25;2(4 Suppl):243–252. doi: 10.1083/jcb.2.4.243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kapoor R., Bornstein P., Sage E. H. Type VIII collagen from bovine Descemet's membrane: structural characterization of a triple-helical domain. Biochemistry. 1986 Jul 1;25(13):3930–3937. doi: 10.1021/bi00361a029. [DOI] [PubMed] [Google Scholar]
  18. Kapoor R., Sakai L. Y., Funk S., Roux E., Bornstein P., Sage E. H. Type VIII collagen has a restricted distribution in specialized extracellular matrices. J Cell Biol. 1988 Aug;107(2):721–730. doi: 10.1083/jcb.107.2.721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Keller G. A., Tokuyasu K. T., Dutton A. H., Singer S. J. An improved procedure for immunoelectron microscopy: ultrathin plastic embedding of immunolabeled ultrathin frozen sections. Proc Natl Acad Sci U S A. 1984 Sep;81(18):5744–5747. doi: 10.1073/pnas.81.18.5744. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kimura K., Koizumi F., Kihara I., Kitamura S. Fibrous long spacing type collagen fibrils in the glomeruli of experimental amyloidosis in rabbit. Lab Invest. 1975 Mar;32(3):279–285. [PubMed] [Google Scholar]
  21. Kittelberger R., Davis P. F., Greenhill N. S. Immunolocalization of type VIII collagen in vascular tissue. Biochem Biophys Res Commun. 1989 Mar 15;159(2):414–419. doi: 10.1016/0006-291x(89)90007-7. [DOI] [PubMed] [Google Scholar]
  22. Labermeier U., Demlow T. A., Kenney M. C. Identification of collagens isolated from bovine Descemet's membrane. Exp Eye Res. 1983 Sep;37(3):225–237. doi: 10.1016/0014-4835(83)90157-4. [DOI] [PubMed] [Google Scholar]
  23. Labermeier U., Kenney M. C. The presence of EC collagen and type IV collagen in bovine Descemet's membranes. Biochem Biophys Res Commun. 1983 Oct 31;116(2):619–625. doi: 10.1016/0006-291x(83)90569-7. [DOI] [PubMed] [Google Scholar]
  24. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  25. McLean I. W., Nakane P. K. Periodate-lysine-paraformaldehyde fixative. A new fixation for immunoelectron microscopy. J Histochem Cytochem. 1974 Dec;22(12):1077–1083. doi: 10.1177/22.12.1077. [DOI] [PubMed] [Google Scholar]
  26. Merril C. R., Goldman D., Sedman S. A., Ebert M. H. Ultrasensitive stain for proteins in polyacrylamide gels shows regional variation in cerebrospinal fluid proteins. Science. 1981 Mar 27;211(4489):1437–1438. doi: 10.1126/science.6162199. [DOI] [PubMed] [Google Scholar]
  27. Sage H., Balian G., Vogel A. M., Bornstein P. Type VIII collagen. Synthesis by normal and malignant cells in culture. Lab Invest. 1984 Feb;50(2):219–231. [PubMed] [Google Scholar]
  28. Sage H., Pritzl P., Bornstein P. A unique, pepsin-sensitive collagen synthesized by aortic endothelial cells in culture. Biochemistry. 1980 Dec 9;19(25):5747–5755. doi: 10.1021/bi00566a013. [DOI] [PubMed] [Google Scholar]
  29. Sage H., Pritzl P., Bornstein P. Endothelial cells secrete a novel collagen type in vitro independently of prolyl hydroxylation. Coll Relat Res. 1982 Nov;2(6):465–479. doi: 10.1016/s0174-173x(82)80003-4. [DOI] [PubMed] [Google Scholar]
  30. Sage H., Trüeb B., Bornstein P. Biosynthetic and structural properties of endothelial cell type VIII collagen. J Biol Chem. 1983 Nov 10;258(21):13391–13401. [PubMed] [Google Scholar]
  31. Sawada H., Furthmayr H., Konomi H., Nagai Y. Immunoelectronmicroscopic localization of extracellular matrix components produced by bovine corneal endothelial cells in vitro. Exp Cell Res. 1987 Jul;171(1):94–109. doi: 10.1016/0014-4827(87)90254-0. [DOI] [PubMed] [Google Scholar]
  32. Sawada H., Konomi H., Nagai Y. The basement membrane of bovine corneal endothelial cells in culture with beta-aminopropionitrile: biosynthesis of hexagonal lattices composed of a 160 nm dumbbell-shaped structure. Eur J Cell Biol. 1984 Nov;35(2):226–234. [PubMed] [Google Scholar]
  33. Sawada H., Stukenbrok H., Kerjaschki D., Farquhar M. G. Epithelial polyanion (podocalyxin) is found on the sides but not the soles of the foot processes of the glomerular epithelium. Am J Pathol. 1986 Nov;125(2):309–318. [PMC free article] [PubMed] [Google Scholar]
  34. Sawada H. The fine structure of the bovine Descemet's membrane with special reference to biochemical nature. Cell Tissue Res. 1982;226(2):241–255. doi: 10.1007/BF00218356. [DOI] [PubMed] [Google Scholar]
  35. Sobel H. J., Marquet E., Schwarz R. Is schwannoma related to granular cell myoblastoma? Arch Pathol. 1973 Jun;95(6):396–401. [PubMed] [Google Scholar]
  36. Tokuyasu K. T. Application of cryoultramicrotomy to immunocytochemistry. J Microsc. 1986 Aug;143(Pt 2):139–149. doi: 10.1111/j.1365-2818.1986.tb02772.x. [DOI] [PubMed] [Google Scholar]
  37. Traub W., Piez K. A. The chemistry and structure of collagen. Adv Protein Chem. 1971;25:243–352. doi: 10.1016/s0065-3233(08)60281-8. [DOI] [PubMed] [Google Scholar]
  38. Valnes K., Brandtzaeg P. Retardation of immunofluorescence fading during microscopy. J Histochem Cytochem. 1985 Aug;33(8):755–761. doi: 10.1177/33.8.3926864. [DOI] [PubMed] [Google Scholar]
  39. Yamaguchi N., Benya P. D., van der Rest M., Ninomiya Y. The cloning and sequencing of alpha 1(VIII) collagen cDNAs demonstrate that type VIII collagen is a short chain collagen and contains triple-helical and carboxyl-terminal non-triple-helical domains similar to those of type X collagen. J Biol Chem. 1989 Sep 25;264(27):16022–16029. [PubMed] [Google Scholar]
  40. Yurchenco P. D., Furthmayr H. Self-assembly of basement membrane collagen. Biochemistry. 1984 Apr 10;23(8):1839–1850. doi: 10.1021/bi00303a040. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES