Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1990 Jan 1;110(1):97–104. doi: 10.1083/jcb.110.1.97

Copolymerization of two distinct tubulin isotypes during microtubule assembly in vitro

PMCID: PMC2115985  PMID: 2295686

Abstract

Cells contain multiple tubulin isotypes that are the products of different genes and posttranslational modifications. It has been proposed that tubulin isotypes become segregated into different classes of microtubules each adapted to specific activities and functions. To determine if mixtures of tubulin isotypes segregate into different classes of polymers in vitro, we used immunoelectron microscopy to examine the composition of microtubule copolymers that assembled from mixtures of purified tubulin subunits from chicken brain and erythrocytes, each of which has been shown to exhibit distinct assembly properties in vitro. We observed that (a) the two isotypes coassemble rapidly and efficiently despite the fact that each isotype exhibits its own unique biochemical and assembly properties; (b) at low monomer concentrations the ratio of tubulin isotypes changes along the lengths of elongating copolymers resulting in gradients in immuno-gold labeling; (c) two distinct classes of copolymers each containing a distinct ratio of isotypes assemble simultaneously in the same subunit mixture; and (d) subunits and polymers of different isotypes associate nearly equally well with each other, there being only a slight bias favoring interactions among subunits and polymers of the same isotype. The observations agree with previous studies on the homogeneous distribution of multiple isotypes within cells and suggest that if segregation of isotypes does occur in vivo, it is most likely directed by cell-specific microtubule-associated proteins (MAPs) or specialized intracellular conditions.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Asai D. J., Remolona N. M. Tubulin isotype usage in vivo: a unique spatial distribution of the minor neuronal-specific beta-tubulin isotype in pheochromocytoma cells. Dev Biol. 1989 Apr;132(2):398–409. doi: 10.1016/0012-1606(89)90236-4. [DOI] [PubMed] [Google Scholar]
  2. Bond J. F., Fridovich-Keil J. L., Pillus L., Mulligan R. C., Solomon F. A chicken-yeast chimeric beta-tubulin protein is incorporated into mouse microtubules in vivo. Cell. 1986 Feb 14;44(3):461–468. doi: 10.1016/0092-8674(86)90467-8. [DOI] [PubMed] [Google Scholar]
  3. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  4. Cleveland D. W. The multitubulin hypothesis revisited: what have we learned? J Cell Biol. 1987 Mar;104(3):381–383. doi: 10.1083/jcb.104.3.381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dentler W. L., Granett S., Rosenbaum J. L. Ultrastructural localization of the high molecular weight proteins associated with in vitro-assembled brain microtubules. J Cell Biol. 1975 Apr;65(1):237–241. doi: 10.1083/jcb.65.1.237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fallon J. R., Nachmias V. T. Localization of cytoplasmic and skeletal myosins in developing muscle cells by double-label immunofluorescence. J Cell Biol. 1980 Oct;87(1):237–247. doi: 10.1083/jcb.87.1.237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fridovich-Keil J. L., Bond J. F., Solomon F. Domains of beta-tubulin essential for conserved functions in vivo. Mol Cell Biol. 1987 Oct;7(10):3792–3798. doi: 10.1128/mcb.7.10.3792. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gadasi H., Korn E. D. Evidence for differential intracellular localization of the Acanthamoeba myosin isoenzymes. Nature. 1980 Jul 31;286(5772):452–456. doi: 10.1038/286452a0. [DOI] [PubMed] [Google Scholar]
  9. Herman I. M., D'Amore P. A. Microvascular pericytes contain muscle and nonmuscle actins. J Cell Biol. 1985 Jul;101(1):43–52. doi: 10.1083/jcb.101.1.43. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Joshi H. C., Cleveland D. W. Differential utilization of beta-tubulin isotypes in differentiating neurites. J Cell Biol. 1989 Aug;109(2):663–673. doi: 10.1083/jcb.109.2.663. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Joshi H. C., Yen T. J., Cleveland D. W. In vivo coassembly of a divergent beta-tubulin subunit (c beta 6) into microtubules of different function. J Cell Biol. 1987 Nov;105(5):2179–2190. doi: 10.1083/jcb.105.5.2179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kuroda H. Polymerization of Salmonella, Proteus and Bacillus flagellins in vitro. Biochim Biophys Acta. 1972 Nov 28;285(1):253–267. doi: 10.1016/0005-2795(72)90196-1. [DOI] [PubMed] [Google Scholar]
  13. Lewis S. A., Gu W., Cowan N. J. Free intermingling of mammalian beta-tubulin isotypes among functionally distinct microtubules. Cell. 1987 May 22;49(4):539–548. doi: 10.1016/0092-8674(87)90456-9. [DOI] [PubMed] [Google Scholar]
  14. Lubit B. W., Schwartz J. H. An antiactin antibody that distinguishes between cytoplasmic and skeletal muscle actins. J Cell Biol. 1980 Sep;86(3):891–897. doi: 10.1083/jcb.86.3.891. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. MacNeal R. K., Webb B. C., Purich D. L. Neurotubule assembly at substoichiometric nucleotide levels using a GTP regenerating system. Biochem Biophys Res Commun. 1977 Jan 24;74(2):440–447. doi: 10.1016/0006-291x(77)90323-0. [DOI] [PubMed] [Google Scholar]
  16. Murphy D. B., Wallis K. T. Brain and erythrocyte microtubules from chicken contain different beta-tubulin polypeptides. J Biol Chem. 1983 Jun 25;258(12):7870–7875. [PubMed] [Google Scholar]
  17. Murphy D. B., Wallis K. T. Erythrocyte microtubule assembly in vitro. Determination of the effects of erythrocyte tau, tubulin isoforms, and tubulin oligomers on erythrocyte tubulin assembly, and comparison with brain microtubule assembly. J Biol Chem. 1985 Oct 5;260(22):12293–12301. [PubMed] [Google Scholar]
  18. Murphy D. B., Wallis K. T. Erythrocyte microtubule assembly in vitro. Tubulin oligomers limit the rate of microtubule self-assembly. J Biol Chem. 1986 Feb 15;261(5):2319–2324. [PubMed] [Google Scholar]
  19. Murphy D. B., Wallis K. T. Isolation of microtubule protein from chicken erythrocytes and determination of the critical concentration for tubulin polymerization in vitro and in vivo. J Biol Chem. 1983 Jul 10;258(13):8357–8364. [PubMed] [Google Scholar]
  20. Murphy D. B., Wallis K. T., Machlin P. S., Ratrie H., 3rd, Cleveland D. W. The sequence and expression of the divergent beta-tubulin in chicken erythrocytes. J Biol Chem. 1987 Oct 15;262(29):14305–14312. [PubMed] [Google Scholar]
  21. Otey C. A., Kalnoski M. H., Bulinski J. C. Immunolocalization of muscle and nonmuscle isoforms of actin in myogenic cells and adult skeletal muscle. Cell Motil Cytoskeleton. 1988;9(4):337–348. doi: 10.1002/cm.970090406. [DOI] [PubMed] [Google Scholar]
  22. Pardo J. V., Pittenger M. F., Craig S. W. Subcellular sorting of isoactins: selective association of gamma actin with skeletal muscle mitochondria. Cell. 1983 Apr;32(4):1093–1103. doi: 10.1016/0092-8674(83)90293-3. [DOI] [PubMed] [Google Scholar]
  23. Rothwell S. W., Grasser W. A., Baker H. N., Murphy D. B. The relative contributions of polymer annealing and subunit exchange to microtubule dynamics in vitro. J Cell Biol. 1987 Aug;105(2):863–874. doi: 10.1083/jcb.105.2.863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Rothwell S. W., Grasser W. A., Murphy D. B. Direct observation of microtubule treadmilling by electron microscopy. J Cell Biol. 1985 Nov;101(5 Pt 1):1637–1642. doi: 10.1083/jcb.101.5.1637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Rothwell S. W., Grasser W. A., Murphy D. B. End-to-end annealing of microtubules in vitro. J Cell Biol. 1986 Feb;102(2):619–627. doi: 10.1083/jcb.102.2.619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Rothwell S. W., Grasser W. A., Murphy D. B. Tubulin variants exhibit different assembly properties. Ann N Y Acad Sci. 1986;466:103–110. doi: 10.1111/j.1749-6632.1986.tb38387.x. [DOI] [PubMed] [Google Scholar]
  27. Rubenstein P., Ruppert T., Sandra A. Selective isoactin release from cultured embryonic skeletal muscle cells. J Cell Biol. 1982 Jan;92(1):164–169. doi: 10.1083/jcb.92.1.164. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Serrano L., Avila J., Maccioni R. B. Controlled proteolysis of tubulin by subtilisin: localization of the site for MAP2 interaction. Biochemistry. 1984 Sep 25;23(20):4675–4681. doi: 10.1021/bi00315a024. [DOI] [PubMed] [Google Scholar]
  29. Spann U., Renner W., Mandelkow E. M., Bordas J., Mandelkow E. Tubulin oligomers and microtubule assembly studied by time-resolved X-ray scattering: separation of prenucleation and nucleation events. Biochemistry. 1987 Feb 24;26(4):1123–1132. doi: 10.1021/bi00378a021. [DOI] [PubMed] [Google Scholar]
  30. Stephens R. E. Structural chemistry of the axoneme: evidence for chemically and functionally unique tubulin dimers in outer fibers. Soc Gen Physiol Ser. 1975;30:181–206. [PubMed] [Google Scholar]
  31. Sullivan K. F., Cleveland D. W. Identification of conserved isotype-defining variable region sequences for four vertebrate beta tubulin polypeptide classes. Proc Natl Acad Sci U S A. 1986 Jun;83(12):4327–4331. doi: 10.1073/pnas.83.12.4327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Walker R. A., O'Brien E. T., Pryer N. K., Soboeiro M. F., Voter W. A., Erickson H. P., Salmon E. D. Dynamic instability of individual microtubules analyzed by video light microscopy: rate constants and transition frequencies. J Cell Biol. 1988 Oct;107(4):1437–1448. doi: 10.1083/jcb.107.4.1437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Wang D., Villasante A., Lewis S. A., Cowan N. J. The mammalian beta-tubulin repertoire: hematopoietic expression of a novel, heterologous beta-tubulin isotype. J Cell Biol. 1986 Nov;103(5):1903–1910. doi: 10.1083/jcb.103.5.1903. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Williams R. C., Jr, Lee J. C. Preparation of tubulin from brain. Methods Enzymol. 1982;85(Pt B):376–385. doi: 10.1016/0076-6879(82)85038-6. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES